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I. INTRODUCTION

The'purpose of this thesis is to calculate the spatially
dependent frequency response for a realistic model of an
actual coupled-core nuclear reactor, to determine what
factors are important in affecting this frequency response,
and to provide a qualitative explanation of the results.

The reacéor to be investigated is the Iowa State University
UTR-10 reactor. A brief physical description of this
reactor is presented in Appendix A and its most important
nuclear parameters are presented in Table II.1.

In this study the term coupled-core reactor means that
the reactor under consideration will consist of two distinct
fissionable assemblies, core one and core two, which are
physically coupled in the sense that some neutfons causing
fissions in core one originated in core two and vice versa.
This relationship is also true between any two adjacent fuel
elements in a reactor, but the idea is most useful when |
the number of assemblies under conslderation 1is relatively
small and when each has an appreciable multiplication factor
when standing albne.

The reasons for studying oscillation tests are well
summarized in a statement by Gyftopoulos (19), who said,
"Oscillation tests, or, in general, small perturbation tests
are performed to measure transfer functions either to design

the reactor regulating system or to investigate stability."




However, before going into the frequency response of coupled
reactors a review of the history of the interest in reactor
transfer functions will be outlined.

The transfer function of a nuclear reactor was first
measured by Harrer, Boyar, and Krucoff (21) at Argonne
National Laboratory in 1952 when they applied the rod-
oscillator technique to the CP-2 reactor and obtained good
agreement with their one-point model at the low frequencies
(ﬁp to 20 rad/sec) which were investigated.

The point model is an adequate representation for a
nuclear reactor as long as the reactor flux shape does not
differ significantly from the fundamental mode, or steady'
state flux shape. However, as reactor size increases this
criterion fails at increasingly lower frequencles. Hence
there is interest in the spatially dependent reactor response,
or alternately, in the ability to locate a detector in a
reactor at a position where the point-model response is
closely approximated. |

Interest in the frequency response of coupled-core
reactors was also first reported from Argonne National
Laboratory (4, 5) where in 1959 Baldwin (5) attempted to
describe the behavior of the Argonaut reactor by writing a
separate diffusion equation for each core and including an
interaction term with the source in each equation. This
interaction term in one core was proportional to the flux

in the other core at a previous time, 7, where 7 is a delay
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time characteristic of the time i1t takes a disturbance to
travel from one core to the other. The biggesf problem with
this model 1s that it requires knowledge of the coupling
coefficient for each core and the delay time between cores.
These are not quantities that are readily available for most
reactors. |

Although done earlier, Avery's work (4) was considerably
more elaborate than that of Baldwin. Avery wrote a point
neutron kinetic equation for each neutron population group'
in a coupled reactor. These groups were based upon an
identification of neutrons by the core in which they
originated and the core in which they were lost to the chain
reaction. This led directly to the definition of partial
lifetimes, multiplication factors, and fission sources.
These quantities were defined from general definitions of
the total quantities as adjoint weighted integral parameters.
That is, the parameters which go into the kinetics equations
are integral properties obftained by adjoint weighting and
integration over the reactor. Hence, this method also
provides a means for finding the reactor parameters to be
used in the kinetics equations.

When a local perturbation i1s made in a very large
nuclear reactor or when fast local changes are made in
smaller reactors the time-dependent reactor flux shape 1s

not well represented by the fundamental mode. For these
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cases a space-dependent model becomes very desirable,
Gyftopoulos (19) has shown that the transfer function
of a reactor is not spatially dependent when the reactivity
is computed in a consistent manner. In this paper what is
calculated is not a spatially dependent transfer function
but the response of a coupled reactor to an oscillating -

absorber,
G(X,X',jw) = 6cp(x,x‘,jw)/52a(x’,jw)

where x represents the detector location, X' represents the
oscillator location, and w is the frequency of oscillation.

The first attempt made to describe the spatially
dependent response of a reactor to an oscillating absorber
was in a classic paper by Weinberg and Séhweinler (41) in
1948 .

Since that time almost all efforts aimed at describing
the spatial dependence of the reactor response have been
by means of a modal expansion technique in which the space-
and timefdependent flux, ¥(x,t), is approximated by a series
of products of space-dependent expansion modes, wi(x), and
time-dependent coefficients, ai(t). The fiux is approximated
by

N

(x,t) = =y, (x)a,
i P

(t)

There are two steps in this type of analysis: the

selection of the space functions and the determination of




the time coefficlents. In this discussilon several versions
will be described corresponding to different methods of
chosing the space functions.

The space modes used for synthesizing the flux may be
either orthogonal or nonorthogonal and the simplest set

of orthogonal modes are solutions of the Helmholtz equation.
7% + B = 0

Use of these solutions was proposed by Foderaré and
Garabedian (14, 15) but they have the disadvantage of being
very difficult to obtain for complex reactor geometries.
Other sets of basis vectors which are also eigenfunctions
are the lambda and omega modes (25, 26). The lambda modes

are obtained by solving an eigenvalue equation of the form

Lwn

=.%; Mwn

where the L-operator is the multigroup removal operator and
the M-operator is the multigroup production operator. The
omega modes are obtained by solving an expression of the
form

(L-MJy, = w, TV,

where T is the diagonal matrix whose elements are the
reciprocal neutron group speeds. These modes have been
used to solve problems but are not very convenient since

they do not have the property of finality. According to



Kaplan (26), a set of modes has the property of finality if
the time coefficients of the modes are independent of the
\number of terms used to approximate the flux. That 1s, if a
set of modes has the property of finality the time coeffi-
clents of each mode can be determined separately. This is
advantageous because it is easier to solve a single equation
than a set of simultaneous equations. Kaplan shows how to
construct such modes and his natural modes satisfy an

equation of the form

Lot = %V

where the Lo-operator is the steady-state operator which

results when the multigroup equations are cast into the form

Ly = @
where

P = colleppC] .

The modal analysis techniques previously described use
eigenfunctions of the unpertufbed problem as the basis
functions of the solution. Another possibility, but which
uses non-orthogonal modes, is the application of the
"synthesis" technique. The idea behind this method is that
if a series of asymptotic shapes, wi(x), are chosen from the
solution of simpler but‘related problems, a set of "mixing

coefficients"”, ai(t), can be obtained so that an approximate



solution to the problem at hand can be constructed.

The type of space modes used in this paper 1s another
set of nonorthogonal modes called Green's Function modes,
which were first introduced by Dougherty and Shen (13).

To obtain these modes the reactor is divided into regions
and the fission cross section is everywhere set equal to
zero, A distributed source is then introduced into each of
the regions--a fission source is used in multiplying regions
and a pseudosource is introduced into‘nonmultiplying regions
(see Appendix C)--and the resulting flux shape 1s taken as
the mode which originates in that regién of the reactor.

An eigenvalue problem does not have to be solved to obtain
these modes and they can be tailored to suit a problem about

which one may have a priori knowledge. That is, the spatial

distribution of the modes is determined using engineering

judgment} The advantage of being able to distribute the
modes at will is that they can be located in higher density
in regions where the flux is expected to vary most rapidly
and this should result.in a better solution than would be
otherwise possible. In particular it has been shown (9)
that the solution to problems involving localized step
changes in reactivity converges much féster for Green's
Function modes than fér»Helmholtz modes .

Most of the work using modal analysis has centered

around time-domain investigations rather than around studies



in the frequency domain and the limited published work
related to reactor frequency responses deals largely with
experimental (20) and analytic (11, 16) results for the
heavy-water mbderated NORA reactor. Other work includes
Loewe's (31) investigation of the differences between the
frequency responses obtained by using the Telegrapher's
equation énd the diffusion equation for both bare and
reflected light-water and heavy-water moderated slab
reactors., Loewe found the differences in responses predicted
by the'Telegrapher’s equation and the diffusion equation were
negligible below 1O4 rad/sec but he presented limited

results dealihg with detailed space dependence of the

reactor frequency responses.

The only published work which includes spatially
dependent fregquency responses for coupled-core reactors is
that by Carter and Danofsky (10), who studied a tightly
coupled unreflected reactor. The main obJjective of thelr
investigation was to study the convergence of Green's
Function modes and to investigate the use of coupling modes
in nonmultiplying regions. As a result, although they

published some frequency-response curves they made little.

comment about them.

In light of the little published work dealing with
spatial effects in coupled nuclear reactors and in view of
the increased consideration being given to coupled fast-

thermal power reactors and the clustering of nuclear rocket



engines, this seems to be an appropriate area for further
study. It is hoped that an effort to»determine what
reactor parameters have an important effect on the
spatially dependent frequency response of the UTR-10
reactor might also be useful to others in other areas of

work.
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II. METHOD OF ANALYSIS USING GREEN'S FUNCTION MOIDES
A. Determination of Criticality

The method used in applying Green's Function modes to
 the frequency analysis of a nuclear reactor begins much the
same way as other modal techniques. First a reactor modei
and 1ts assoclated nuclear parameters are chosen and the
steady-state flux and adjoint distributions are obtained.
The prototype réactor model used in this study is shown in
Figure II.1 and represents a one~dimensional idealization

of the Iowa State University UTR-10 reactor.

GRAPHITE GRAPHITE .GRAPHITE
REFLECTOR COUPLING REFLECTOR
= | REGION |4
= £
f o)
&= I

— 105 em . l._ Jf 45cm ___!__,_]

R85 em

Figure II.l. Dimensions of UTR-10 reactor.

Table IT.1 contains the two-energy-group nuclear data
(2, 35, 39) which were used to represent the prototype
reactor, In this diffusion approximation fast fission and
absorption in the fast group were considered to be negligible.
The exact form of the representation used is given by

Equations C.16, C.17, and C.18} For a first approximation

ISee Appendix C.
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i1t was assumed that the U-235 content was the same in each
core tank and unless otherwlise stated this will also be the
case in all other examples. It will be seen later that
none of the conclusions are changed for small flux tilts
which might result from unequal loading.

The first estimate of the transverse buckling, which
was used to describe the leakage of neutrons through the
two sides and top and bottom of the reactor, was obtained by
making a horizontal and vertical flux map through a core
tank, extrapolating the fluxes to zero and obtalning the
buckling in each direction by assuming the flux obeyed an
equation of the form

©(z) = A sin B,z

The total transverse buckling, Bé, is the sum of the two

components
2 _ 12 2 _ -2
Bp = By + B = 0.00216 cm ]

Table II.1. Reactor parameters

Reactor Region
Parameter north north coupling south south
reflector core region core - reflector
I? em 1.14 1.30 1.14 1.30 1.14
D, cm 0.843 0.121 0.843 0.121  0.843
£, em™*  0.000284  0.0716 0.000284  0.0716 0.000284
£, em”t  0.00296 0.0210 0.00296  0.0210 0.00296

i em ™t 0.000 0.0499  0.000 0.0499 0.000
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At criticality the solution of the'diffusidn”equation‘;J
and its adjoint must satisfy conditions requiring (i) that';;ﬁ
the fluxes and adjoints go to zero at the extrapolated "
boundaries of the.reactor,

3(0) = 8(285) = 0 g7(0) = 3¥(285) = 0 (II.1)

(2) that the fluxes and their currents be continuous at all

internal material interfaces,

o(x=x]) = @ (x=x7) g (x=x]) = @ (x=x]) (I1.2)
& B ™) o B et |
J 5% Q(x-xj) = i1 5% 6(x—xj) (11.3)
Yo - ol +
S 20 (e N B N o
55 (x=xy) J+1 3 (% )
where .
+
Dp. O »i B P
09; = J ! R T = { R m+ = N
O DSJJ L‘:ps D

and the Xj correspond to the reactor material interfaces
and (3) that the fluxes &(x) and @7 (x) be finite and non-
negative, | |

When the homogeneous boundary conditions, iI.l, and
the continuity conditions, II.2 and II.3, are applied to
the two-group diffusion equations a 2n x 2n set of homogeneous
equations results

Qe = 0 (IT.4)
where n is two times the number of internal material inter-

faces plus two. The reactor is adjusted to criticality by
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changing a parameter, usually the thermal absorption cross

section, so that the determinant of the coefficient matrix,

Q, is zero.

Since the set of parameters which makes the reactor
critical is now specified, the solutioh of fthe two-group
diffusion equations may be evaluated in each region of the
reactor after solving for the matrix of coefficients, ¢,
in II.4. From this solution vector the fast- and thermal-
group fluxes can be calculated, |

A similar proéedure is followed for the adjoint system.,
Typical shapes for the neutron flux and adjoint distributions
are shown in Figures II.2 and II.3 for the prototype reactor
of this study.

A parametric analysis‘was made on this prototype model
and it was found that both the transverse buckling and
coupling-region size had pronounced effects on the flux
and adjoint distributions. As the transyerse buckling
was incfeased, the leakage from the reactor increased and.
the most pronounced effect was to reduce the .peaking of the
thermal flux in the reflector regions. Similarly,when the
transverse buckling was decreased the thermal flux peaked
more in the reflectors because fewer fast and thermal
neutrons were lost to'leakage. Changing the size of the
coupling region caused the thermal flux to increase slightly
as the cores were moved closer together and caused the fést

flux to decrease less in the coupling region.
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The adjoint function, Figure II.3, is frequently called

the importance function and may be thought of as a relative

measure of the worth, or importance, of a neutron in sus-

taining a chain reaction (24), As the cores were moved
together the slow adjoint distribution changed little while
the fast adjoint distribution became much flatter in and
between the cores. The fact that the fast adjoint was almost
constant in and between the cores suggests that a fast
neutron at any poimt in these'regions has about the same
worth for sustaining the chain reaction,.

When a flux tilt was desired,it was produced by
selectively changing the thermal absorption cross section in
one core and adjusting the cross section in the other core
until the reactor was critical, This caused the reactivities
of the two cores to be different and resulted in the flux
tilt. For small tilts, 1.4:1 or less, the characteristics
of the flux shapes were not changed but only shifted in
magnitude relative to one another,as is illustrated in

Figure V.13.
B. Evaluation of Space Modes

The basic assumption of modal analysis is that the
flux can be represented by a sum of products of space-
dependent modes and time-dependent coefficients

N
w(x,t) = T ¥, (x)a (5).
- i=1
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These space modes are obftained by solving Equations c.28
and C.29 from Appendix C. If N, the number of modes used in
the approximation,is chosen to be five so that one mode is
present to represent each region of the prototype reactor,
the set of modes for the fluxes and adjqints illustrated in
Figures II.4, II.5, II.6 and iI.? is obtained. To minimize
confusion only the modes representing.the first three
regions of the reactor are illustrated except in Figure IIL.4
where all five are shown. For the symmetric case being
considered, the modes representing regions 1 and 2 are
mirror images of those represénting regions 5 and 4
respectively.

The Green's Function modes in themselves contain a
considerable amount of information about. the reactor.
Figure II.4 is a graph of the fast-flux modes where the
wide modes representing-the fuel regions, regions 2 and 4,
illustrate the effect of the large diffusion length of
fast neutrons. This allows them to be present in signi-
ficant numbers relatively far from wheré they originated..
The modes representing regions 1, 3, and 5 are negative
and much smaller than the positive source modes of regions
2 and 4. These rgﬁlector modes have been plotted to a
different scale so that theilr shapes can be more easily
seen and they ére negative because of the negative fast-
neutron sources in these regions. That is, fast neutrons

are removed from the fast group in the reflectors by




&3}

-
=

MAGNITUD

RELATIVE

-0.6

Figure II.L4, Fast flux modes.

o




1.6

1.4+

1.2 |-

MAGNITUDE
o
|

N

0.6
(IR}
é 0.G}-
<<
ol ool
0': -‘(

0.2

0} l ] | \b)l I i \; ] 1 1 | ]

O 20 40 cO0 &0 100 120 140 160 100 200 220 240 280 23

Figure II.5.

DISTARCE (cr)

Slow flux modes.

61




Py
(.

MAGNITUD!

RELATIVE
w0
]

0 LT I —) b | | ! |

0 20 20 60 80 100 120 120 160 180 200 220 240 280 200
DISTANCE (cm)

Pigure II.6, Fast adjoint modes.

02



MAGNITUD

—
f
S

1.0~

0.8 |-

0.6}—

P
P,

0.4 -

RELATIVS

0.21-

0.0

Figure IIL.7.

O 20 40 60 &0 100

- Slow adjoint modes.

20 140 160 180 200 220 240 260 280
DISTANCE (cm)

T2




22

leakage and by slowing down to the thermal group.

Figure II.5 represents the thermal-group modes and
illustrates the effect of the difference in the diffusion
coefficient and cross section between the multiplying and
nonmultiplying regions. An effect of the large absorption
cross section in the fuel 1s that the reflector modes are
essentially completely attenuated in passing through the
fuel regions. This implies that the reflector regions are
decoupled from each other as far as direct exchange of thermal
neutrons is concerned. Consequently a thermal source ﬁlaced
in one reflector would be completely attenuated in passing
through a fuel region. However, this applies only to the
original source neutrons and not to any progeny produced by-
fission within the core. The thermal-group modes for the
reflector regions are positive and caused by the thermal
neutron sourée due to the slowing down of fast neutrons in
these regions.

From Figure II.6 it can be seen that the fast-adjoint
modes are simllar to the fast-flux modes except that the
adjoint modes for the fuel regions are more strongly peaked.
This reflects the fact that loss by fast leakage is only
slightly less than loss by fast removal in the moderator.

In the fuel, removal by slowing down dominates and productioh
of thermal neutrons in the fuel is very important in
sustaining the chain reéction. The most obvious difference

between the fast-adjoint modes and the fast modes is that
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the fast-adjoint reflector modes are positive. This
indicates that a fast neutron in the reflector has a
definite worth to the system and reflects the fact that
absorption in the direct system results in a source in the
adjoint system since the two are duals of each other.

The slow-adjoint modes of Figure IIL.7 illustrate many
phenomena similar to those discussed above so the arguments

will not be repeated.’
C. Synthesis of the Frequency Response

The technique used to obtain the frequency-dependent
coefficients of the space modes is the-simidirect method of
the calculus of variations. In applying this technique the

approximations for the fluxes

N
o(x,t) ¥ 5§ (x)ay () (I1.6)
i=1
and for the adjoints
+ N + :
v(x,t) ¥ Ty (x)ay(t) | (I1.7)

i=1

are taken as the trial functions to be substituted into the
functional, F, of Equation II.8 and the Euler-Lagrange
equations for II.8, which are the equafions defining the
coefficients of the sﬁace modes, are the reduced neutron
kinetics equations. |

After substituting the trial functions, II.6 and II.7,
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into the functional, the procedure is to integrate the
functional with respect to space, take the variation of thé
reduced time-dependent equation with respect to the adjoint
variable, set the variation equal to zero, and solve the
resulting set of equations for the frequéncy-dependent
coefficients of the direct system.

The functional used by Dougherty and Shen is a modifi-
cation, to allow a natural-current boundary condition, of a
functional first proposed by Selengut (37). The modified

functional is

T X T : T
+ n +7 -1 oad Jﬁ a@ +
FloT,pl = [ [ Tatax(@” v7~ ¢ + Bx - o' H3} .
o X
. - (11.8)
where
R + +
2" = [ppo ] and @ = collwpo]

Substitution of the representation of the two-group diffusion

equations from Appendix C into Equation II.8 gives

voo 0 | . f@
- o+ F 3 gy
Flp, 0, Pp, 0] = f f atdx{[¢pvy ] - ST |
o X, Vs | Ps
i - oo
] Dp 0 ’ 3 q@ﬂ + + Zre_ G | 'F
+——[cp-ﬁcp = -l ]
F¥s X HF's
0 DF ®s I T Ps
(1I.9)

Multiplying out the matrix form of the functional, F

becomes
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T X 3 v
+ + _ n + -1 O%F + -1 %78
Flop, 0,9, 951 = [ [ "atdx(epvp 55~ + 95v5" 55

0 X,
oy Wy gy g +
T Ix Dp S X DS'Bx T Op e T CPFGCPS
+ +
- OIEL0p P T, Pg) - (11.10)

To simplify exposition, the approximation II.6

- N
o(x,t) = 5y (x)a (t)

will be rewritten in an equivalent matrix form as

o(x,t) & y(x)a(t) , | (IT.11)
- where
U(x) = [y (x)oup(x)s ey ty(x)] (IT.12)
and
aT(t) = [ag(t),ap(t), .., ag(t)] . - (1.13)

Substituting this simplified description of the approxi-

mation into the integrand of II.10 yields
aaF da

T X
n + 41 + + -1 S
Fo= [ ] Mavax(vgagvy 5g + Vgagvy Vs 5o
o XO
. . +
ovp . Slp Os 4 Ol

oy ¥ . _8 + 4 | _++_
55 2FPr 5% 2F T 3% %sDs 3% %s T UpPrlre"Rir " VRROVsds
- WZagzr¢FaF + 02Ty g a) (IT.14)

S sTae’'s S

and integrating out the space dependence leaves the reduced

functional
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which is a function of only one independent variable, time.

Where

<f‘(x)> -] f(x)ax (11.16)

reactor

The variational method now allows the evaluation of the
coefficients of the direct modes by taking the variation of
the functional with respect to the adjoint time-dependent
coefficients and setting these variations equal to zero.

This yields equations of the form

oy d
GF 1, dag . Fy 5 Vg .
@F F F "%‘ d3x ~F 3x °F
5aF. ‘
1
+ + _
+ wFizrewFaF ¢F1G¢Sa%> =0 (I1.17)
and +
5F + -1 %8y awsi CR
= {(§q VSV, —/— + D a
aa+ 8; 8 '8 ot X 85 oXx 8
S .
i
+ + _
- wsizeraF + Wsizaewsa;> =0 . (11.18)

Now let A = collagae ] and represent %% as A, Then the set
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of equations represented by Equations II.1l7 and II.18 may
be written as

A = KA 3 | (I1.19)

or in expanded form

-

+ -1 - s
<’F.‘,’F i ). 0 g
1 J 1]
+ -1 :
0 i e Voo a
<\'sivs wsg>1g 1 s
- +
WFi BI‘JF' I 7
-< 5% OF ax ‘yF Zrelp > <¢F G >lJ ap
-s. Vs
T ey - i J
<¢SiZPVFJ>ij < ox Ds ox +l"s_. Zae S > _as ,

To simplify the writing of the K matrix let

Gy,
F.'F Up,
J/id

| + -1
S /‘ys‘.vs 1‘I’s_.>..
1 J/ 1]
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=
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so that II.19 becomes

A o1 [a (¢ la
| S M
F o F (II.20)
0 AS 8 ¢ -n ag '
The time dependence of the slow absorption cross
section is assumed to be of the form
| _ Juwt -
£,(t) = £,(0) + AL e (1I.21)

where za(O) is the value of the cross section at which the
Jut pepresents a sinusoidal
oscillation of magnitude Aza and frequency w. The matrices

4 and n may be expanded into components as follows

TR <w VE.(1-8) <ws¢r
D a - F. 7 >> F."D J/)lJ
_ .,

L J/ 1d

and the operator SD can be rewritten to allow a convenient
evaluation of the delayed-neutron contribution to a
sinusoidal driving function. From Appendix C
.M t
; ~A{t-T
(x,t) = Vi, _21 Ay By [ @S(X,T)e 1 )dT

Spog

“co

and in a general modal representation of the problem

vg(X,7) becomes T (x)as (7). Since small sinusoidal
=1 %8
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perturbations are made, the reactor response will be
approximately linear and the output will be of the same form
as the inpuﬁ. This allows the expansion of the vector,
A(t), in terms of an initial steady-state component, A{0),
and a perturbed component, AA(t) = ﬁejwt, where 4 is a
frequency-dependent complex number. For a particular mode

then

asj(t) - asj(o) +'Aasj(t) (IT.22)

and the precursor concentration from a single modal component

of the flux is

M
SDwsj(X)asj(t) = wsa( )VEe LM j [a
+ e (£)leM(t-T)g - (II.23)

S.
J

where & (t) represents the time-dependent portion of aj(t).

J
Since ag (0) = 1, the integral in II.23 can be rewritten as
; v
t t
J e’xi(t—’)dT + [ AaS(t)e_Ki(t_T)dT (II.24)

ko] - J
and the first integral in IL.24 can be evaluated <directly

t At -
“-As AT . e 1 _ e 1
e 1 Im e an ( }\i -‘—)\i ) = ri . (II.25>

The second integral in II.24 can be evaluated after observing

that for the sinusoidal driving function

pa_ (r) = & &%, (II.26)
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where és is a complex varilable which is a function of
frequency. Substitution of II1.26 into the second integral
of II.24 yields

t t :
J"ajez}wte-Ai(t—T)dT - éje—kit J‘ eT(}\i-}-Jw)dT

T(rgtiw) t (hi-Jw)

A —het eT(Ay+iw) N i jwt

=4.e M¥ [Z——] =3, eV . (II.27)
J AptJw J x? - e

-0

Therefore the delayed-neutron contribution, Spls (x)as (t),

J J
becomes _
M a.(A +juw)
- 1 Jri .
Spig (Klag (8) = yg (x)vZe = AR IE-+ o Juty
3 i T i=1 1 2, 2
i
(11.28)
or for one group of delayed neutrons
vzfxga
Spyg, (¥lag (8) = 4 (%)VEB + (37—
J J J + W
WVELAB . '
. £ t
+ ) edUWt | (I1.29)
At ow »

The delayed-neutron contribution consists of a steady—state
part plus a real and an imaginary oscillating component.
These last two contributions are frequency dependent and
their contributions become negligible when the frequency, w,
is large compared to the'delayed—neutron decay constant, \.
This 1s consisten; with the usual assumptions and observa-

tions.
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It is convenlent to rewrite the X matrix as being due

to a sum of different contributions, that is:

=8 Moty ~g My O by 0 0
‘ = + +
¢ -(n+in(t)) ¢ -Mg 0 0 0 -&n(t)
or
K=Kp+Kd+.5K

where Kp represents' the contribution due to prompt neutrons

K. represents the contribution due to delayed neutrons

d
8K represents the contribution due to the oscillating
absorber,

The form of Edquation II.19 now becomes
M = [Kp + K4 + SKJA . | (I1.30)
Substituting ﬁhe form of the solution into IT.30 gives
junhed ¥t = (K, + Kq + 6K1[A(0) + Red%y (iI.31)

Multiplying IT.31 out, neglecting products of second order

terms and recognizing that

K Ao + K oo

. A, = (K + KgJhy = KA =0

d

Equation II.31 reduces to

swphed®t = Kpﬁe'jwt + Kdﬁej‘”t + 6KA, . - (11.32)
From the definition of 8K
0 0 . .
5K = ‘} = eJut (11.33)

jwt
0o - ‘y+ AZ er 1l]s >
<SJ & 3/ 1
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so that substituting II.33 into II.32, the linearized

equation becomes

[jon - (Kp+Kd)]A = KA. (I_I.34)
which in expanded form is
E+jwhy - (Hp+Hd)- ap | 0
-C no+JwAs ‘as -8n(t)

This equation can be solved directly for the complex

oscillatory component of the flux from which the frequency

response can be synthesized.

D. Block Diagram of Method of Solution Using

Green's PFunction Modes

In order to clarify the procedure described in the
previous three sections, the steps performed in this analysis

are summarized below in block diagram form.

| Determine reactor parameters.

!

Evaluate criticality
determinant. N

4

Is determinant zero? No—-Increment cross
T section.
Ygs

1 |4

Evaluate coefficients
for direct flux. -

|

Calculate direct flux
for each energy group.

Evaluate coefficients
for adjoint flux.

1

Caleulate adjoint flux
for each energy group.
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Determine c

coefficient

of modes uslng flux

oefficilents

S .

|

Calculate d
and their d

irect modes
erivatives.

|

Check to in
direct mode
steady stat

sure that
s sum to
e flux.
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@

Determine coefficients
of adjoint modes using
adjoint coefficients.

;

Calculate adjoint modes
and their derivatives.

!

Check to insure that ad-
joint modes sum to steady
state adjoint flux,.

!

Multiply appropriate modes and
derivatives of modes together
and integrate over each region

of reactor.

;

Weight integrals with appropriate ™~
nuclear parameters for each region,

construct A and
calculate frequ

coefficients for a given oscillator
position.

K matrices, and
ency dependent

!

Using frequency dependent coefficients

synthesize reac

for detector of position desired.

tor frequency response

Specify new
detector 1lo

cation.

Specify new
oscillator location.

Yes, new
detector

Is frequency re
different condi

sponse under Yes, new
tions desired? - oscillator

location

[5108)

- location
No

If a new reactor geometry or new material properties are

required the calculation must begin at the beginning again with

evaluation of a new criticality determinant for the system.
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III. COMPARISON OF RESULTS FROM VARIOUS MODELS
A. The One~Point Model

The one-point model is the simplest'description possible
for a nuclear reactor and is presented as a reference to
which the behavior of other deScriptionS'can be compared.
This comparison will be only heuristic and not in the hope
that other models will duplicate the results of thé ohe-point
model,

The transfer functions considered in this study répre—
sent réactors in a state of power equilibrium. That is, the
reactors are delayed critical. Some analyses have been
performed for reactors in a state of period equilibrium
and their transfer functions have been found to differ
considerably from those of reactors at the steady state
(8, 34, 38), but this will not be of concern here.

The well known one-point neutron kinetics equations

including delayed neutrons are

[(kgpp - 8)-1] M | |
dnéﬁl - effﬁ n(t) + 2 Aeq (t) (1II.1)

de (t) _ Kepr B

& T g

n(t) - xici(t) . (I1I1.2)

Applying the usual approximations of

Kopp(t) = k_oo(0) + sked® (1II.3)
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and M=1, ‘the reactor transfer function can be shown to be

5 1 A 1 |
Gr(s) = ﬁ‘ﬁﬁ -t e flieay (T

and the straight-line approximation of the Bode plot for

n

this transfer function follows

jree:f) .
[«}

103 w

2
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B. Avery's Two-Point Model

1. Oscillation of a core

The equations for the transfer function of a two-point

reactor are derived using Avery's notation (4)'in Appendix B.

These equations were solved using the parameters of the
UTR-10 prototype and the transfer functions énd partial
responses for a reactivity oscillation in core one are shown
in Figures IIT.1, III.2 and III.3.

The response of core one,iwhere it is the driving core,
is shown in Figure III.l. This response is quite similar to
that of the one-point model with breaks in the magnitude
occurring at A and B4 rad/sec and with the slope of the
magnitude curve being about 20 db/dec in the vicinity of the

break and almost 20 db/sec at its asymptotic slope.
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The phase behavior is also much like that of the one-
point model except for the small bump in the severai hundred
radian region. and except‘for the very-low frequency behavior.
The decrease in the pﬁase 1ag at very-low frequencies 1is
characteristic of the phasé behavior of subcritical
reactors (28) and has also been observed when the two-
point model is used to describe coupled fast-thermal systems

(33).

The total source in core one, Sl’ 1s due to the sum of

component sources due to neutrons in core one which origin-

ated in core one, Sll’ and due to neutrons in core one which

originated in core two, 812.

S, = 85,45 + 812

1 11
Since. the S11 type neutrons are the predominant type in core
one the response of theée neutrons is essentially identical
to the overall responsé of the core, hence their response |
will not be plotted separately. However, when the response

of S type neutrons is calculated, Figure III.2, an appar-

12
ently previously unobserved behavior is evident., Instead

of falling off at 20 db/dec after the B/ Dbreak, the
magnitude continues to roll-off to about 60 db/dec before
quickly recovering. This recovery of the magnitude produces
a sink at about 800-900 rad/sec.

A sink will be said to occur in the magnitude of the

reactor response if the slope of the magnitude changes




3

-50 |~ ’ —-1¢0

-GO —~200

-0l | I ] L I -210
107¢ To 10° 10! 10° 109 10%

Figure IIIL.2. Response

OSCILLATION FREQUENCY (rad/scc)

of 812 to oscillation of core one,

e

{d

PHASE

grees )

gt



39

sign from negative to positive at any point and the sink
frequency is the frequency at which the sink occurs.

The phase behavior of the 812 population is much like
that of the S

1
is approached. Near the sink the phase lag undergoes a

or Sll populations until the sink frequency

rapid decrease from about —130O to about.—18O before it
begins to increase again. Once past.the sink the magnitude
approaches an asymptotic slope of 20 db/dec and the phase
becomes asymptotic to —900.

A response similar to that of the S pulation is

12 PO
also found in the space-dependent model., The mechanism

for the cause of both appears to be similar and a mechanism
to explain the space-dependent results is proposed 1n
Chapter IV. In the two—boint model the sink occurs in
neutron population group 12 but it s in the equivalent of
the 21 group that the sink occurs in the two-group space-
dependent model. Since the shapes of these responses are
similar, a similar mechanism could cause them both and a

time delay in the system seems capable of qualitatively
describing both results. In the two-point model a sinusoidal
oscillation in the neutron density is thought to propagate
from core one to core two and return to core one 180° out

of phase with the neutron density oscillation being
generated in that core by the reactivity oscillation. This
results in é partial cancellation of the neutron-density

oscilllation and causes a sink in the magnitude of the
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reactor response,

Figure III.3 represents the response of core two to a
sinusoldal oscillation of core one. The high—frgquency
response of the driven core, core two, is a result of the

input signal--the output from core one--being filtered again.

This produces a 40 db/dec slope in the magnitude beyond the
8/ break and an asymptotic phase lag of -180° instead of
Jjust —900.

The response of the Sy, population group is almost
1dentical to that of the S;; response except that at high
frequencies the phase lag continues to increase and does
not approach an asymptote and the magnitude asymptotically

approaches 40 db/dec. As would be expected the 821 response

~exhibits the same general behavior as the 82 group.

2. Oscillation of the coupling

When the coupling between the two point cores is
oscillated, the situation is much simpler than before and
is analogous to placing a reactivity oscillator in the
coupling region between the cores of a coupléd—core
reactor. In this case the response of each of the Sl and
Sps 594
identical. Cores one and two are driven by an oscillating

and 822, and 812 and 821 popglation pairs is

source and they respond with the usual source transfer
function as seen in Figure III.L4,
The response of the S11 and 822 population groups looks

much like that shown in Figure III.4 up to 100 rad/sec, but
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above this frequency the phase shift becomes larger and the
magnitude attenuation is greater.

The 812, or 821’ population response shows a broad
leveling in the magnitude from 200-2000 rad/sec and a
gradual phase reversal in thigﬂqegion. This behavior is
again believed due to the interaction of exchange neutrons
between cores.

These component responses are not described in detaill
" since the results are presented only to provide background

information and serve as a basis for comparison.
C. Green's Function Modal Analysis

In this section the convergénce of the Green's Function
modes will be investigated and some space dependent results
will be presented. Green's Function modes are nonorthogonal
and this makes the theoretical treatment of thelr convergence
more difficult than the treatment of convergence for
orthogonal sets of modes. However, convergence to an exact
solution in the limit as the number of modes increases
without bound 1s not necessarily of direct importance in
engineering applications since physical requirements permit
the use of only a finite (and small) number of modes. For
this reason the most common method for determining convergence
is to observe whether the solution changes appreciably when

an extra mode 1s added to the approximation. If no
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significant change is observable, the approximation is said
to have converged.

Since one of the primary objectives of this study is to

investigate spatially dependent effects, all of the spatially
dependent magnitude responses in this study are normalized
to O db at the lowest frequency plotted on each figure.
This is done in order to make the effects caused by changing
the oscillator and detector locations more apparent.

1. Iwo modes

When only twoAGreen's Function modes are used to

describe a coupled-core reactor it is reasonable to choose
each of the modes to originate in a fuel region, If this

is done it is not possible to obtain an adequate description
of the system in either the time or the frequency domain,
Figure III.5 represents a typical result when a plane
oscillator and detector are located in the center of one
core., No significant spatial dependence is predicted by

the two-mode representation as the detector is moved about
the reactor.

2. Five modes

. It has been found that in order to describe a coupled
nuclear system using Green's Function modes it is essential
that a mode(s) representing the coupling region be present.
These modes were first mathematically described by Carter:
(9,10) who also suggested that they were necessary for an

adequate description of the time behavior of a coupled
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reactor., This was subgéquently confirmed by McFadden1

by comparison with aﬁ exact solution. This investigation
used two, five, and seven mode representations to confirm
that such modes are also required in order to obtain an
adequate description of the system in the frequency domain.

A review of some of these results follows after a
brief description of the model.

The dimensions of the one-dimensional model uéed to
represent the UTR-10 reactor are shown in Figure 1II.1 and
the oscillator and detector positions investigated in this
study are illustrated in Figure III.6.

Detector 1ocatiqns are designated by the letters A
through E in Figure III.6 and they are positioned in all
the models used in this study so that the detectors A and
E are 20 cm from the nearest fuel region interface and B,

' C, and D are located in the center of the left core tank,
coupling region, and right core tank respectively,

The oscillator locations were taken to be: (1) 12 cm
from the left fuel region, (2) in the center of the left fuel
region, and (3) in the center of the coupling region. These
locations correspond to possible access points in the Iowa

State University UTR-10 reactor.

1McFadden, James, Ames, Iowa. Results of computer
calculations. Private communication. 1968.
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For a five-mode analysis each distinct material region
of the reactor was represented by a mode. The derivations
of the equations for these modes and the manipulation of
the two-group neutron-dlffusion equations into a form con- .
venient for this analysis are shown in Appendix C, The
~equations which must be solved to determine the frequency-
dependent coefficients for the synthesis of the frequency
response are derived in Section II.D. The frequency
response 1s synthesized by evaluating ah equation of the form

P(x,Ju) ¥ £ 4 (x)a; (Ju)

i=1
where N is the number of modes in the expansion and x fixes
the detector location. The oscillator location and type,
i.e., energy dependence and size, were specified before the
frequency-dependent coefficients were obtained.

Throughout the rest of this chapter a localized plane
oscillator, with absorber in only the thermal group, will
be assumed to be located in the center of the left core
tank and the detector will be moved fo positions 4, B, C,

D, and E.

Typical results for a five-mode analysis of the UTR-10
prototype reactor are illustrated in Figures III.7 and IITI.8.
Fundamental differences, and some similarities, are apparent
between these responses and theISpatially dependent response

of a conventional reactor.
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One of the similarities between these results for a
coupled reactor and experimental results for a conventional
heavy-water reactor (9) is the slight resonance in the
magnitude and phase which is present when the oscillator
and detector are located at the same point. Except when
the detector is located in the driven core or bexond, the
other detector positions also yield results qualitatively
in agreement with results obtained experimentally by Hansson
and Foulke (20) for the NORA reactor.

One of the significant differences between the results
obtained here and those previously reported is that both
"conventional" behavior and a sink have been observed in a
consistent set of results on a single reactor type. In
addition a mechanism is proposed to explain the pTresence of
the sink. The occurrence of the sink is not without pre-
cedent in nuclear systems. Kylstra and Unhrig ( 30) experi-
mentally observed multiple sinks in both light-water and -
heavy-water slab subcritical éssemblies and Hendrickson
(22) observeq a similar phenomenon in cross-spectral-density
measurements on the Iowa State University UTR-10 reactor,
under slightly different circumstances. Thus there is good
reason to believe that the sink actually exists and can be

~ directly measured in a physical system.
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3. Seven modes

A sample problem using seven moaes was run as a check
on the convergence of the five-mode solution. The two
extra modes were added in the left fuel region; so that it
was represented by three modes in the seven-mode analysis;
The additional modes were added to the driving region
because it is the region in which a reactivity change
is being made and hence the flux 1s changing most rapidly
there, Similarly, if a time-domain analysis were being
made with a reactivity change in the left core tank one
would be inclined to add more modes near where the change |
was being made since that is where the flux would experience
the greatest change. -

As can be seen from Figures III.7 and III.S8, the
agreement between the five-and seven-mode calculations 1s
very good up to 1500 rad/sec; While results are not
included on these figures for frequencies less than 1
rad/sec the agreement for low frequencies was excellent.
Thus it can be said with reasonable certainty that the five-
mode results should be accurate up to 1500 rad/sec and above
that they should show trends well enough to draw general
conclusions. That is, above 1500 rad/sec the differences
between the five- and seven-mode results are in quality and

not in kind.
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IV, POSSIBLE MECHANISM FOR CAUSE OF SINK

A distinctive feature of the frequency responses
obtained in this study is a sink, or sudden decrease in
the magnitude of the frequency response followed by a rapid
recovery, at frequencies between 2000 and 3000 radians per
second.

It is believed that this phenomenon is caused by a
superposition of two waves of the same frequency and approxi-
mately the same amplitude but which are 180° out of phase.
This phase difference could be caused by a simple time delay
in the system. If so, the frequency of the first sink can

be determined to be w = T/T since

w = 2rf

£ =1/T

T = T/2
where

w ~ frequency, rad/sec

T ~ period of the wave, sec

T ~ magnitude of the delay, sec.

For the two group model used in this study it is pro-
posed that when the oscillator is in one core tank the fast-
neutron-group oscillation propagates essentially instantly
across the coupling region and 1s thermalized in the other
core tank. The thermal-group oscillation propagates

much more slowly through the fuel regions and across the



54

coupling region and arrives at the driven core after the faét

oscillation., Then, at some frequency the transit time of the

thermal group is such that the thermal oscillation arrives

at the driven core 180° out of phaée with the thermalized

fast wave. The result is partial cancellation of the neutron

oscillation in the driven core and a decrease in the magnitude
of the frequency response at that frequency.

The neutron'wave velocities in the various reactor
regions can be calculated (32, 42) and for a 45 cm internai
reflector the tfansit time from the center of one core to
the center of the other for an oscillation of 2000 rad/sec
is 1.55 msec. This transit time implies that a sink should
occur at 2020 rad/sec which is in good agreement with the
observed frequency of about 2000 rad/sec.

A change in the thermal-group speed should cause the
sink frequency to change and this effect is observed. For a
thermal-group speed of 3000 meters per second the calculated
total transit time is 1.226 msec. and this leads to a sink
frequency of 2560 rad/sec which agrees favorably with the
observed sink at about 2700 rad/sec.

Systems with sinks similar to those found here are
relatively common in boiling heat-transfer systems (1, 6).
For example the power-boiling. boundary transfer function,

z(s), is described by

sT
z(s) = 153
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where T is a time constant associated with the time required
for water to pass from the inlet of a boliling core to the
outlet. When this transfer function is integrated over a
range of T to represent an averaging due to the distribution
of transit times caused by the velocity distribution in
the flow channel, successive sinks are observed with the
same general magnitude énd phase behavior as seen in thé
UTR-10 reactor with oscillator at position 2 and detector
at position E,

A detailed analysis.of this phenomenon would be
interesting and could be of practical value, but unfortunately

is beyond the scope of this work.
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V. PARAMETRIC ANALYSIS USING GREEN'S MODES

The earliest investigations of coupled-core reactors

(4, 12) revealed that these reactors are particularly

susceptible to flux tilting and that the sensitivity to
tilting depeﬁds largely upon how tightly the two cores are
coupled. Therefore the effect of flux tilting on the
frequency responée was chosen as one of the parameters to
~ be investigated. Also investigated in this analysis were
the effects of (1) a localized versus a volume oscillator,
(2) the neutron group speed, (3) neutron energy group, (4)
coupling region size and (5) oscillator location. These
were chosen as parameters which might be important based
upon experience with simpler nuclear reactors and con-
jecture,

The results of these ahalyses will be discussed in
approximately the inverse order of their effect on the

reactor response.
A. Effect of Flux Tilt

When an oscillator is placed in a reactor 1t contri-
b&tes a steady—stateApoisoning effect due to the materials
of its construction in addition to the dynamic reactivity
effect it produces when its rotor is in motion. The result

of this steady-state polsoning is to depress the flux in

the vicinity of the oscillator or, in the case of a coupled
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reactor, to;tilt.the flux. The flux was tilted in the UTR-10
prototype reactor by increasing the cross section the
desired amount in the core which contained the oscillator and
iterating to the required critical cross section in the other
core.

It was found that for small flux tilts--at least up to
1.3:1--the effect of flux tilt on the frequency response
was negligible except at high frequencies and when far from
the oscillator, where the differences were almost negligible.
Differences between frequency responses are considered

negligible 1f the magnitudes and phases differ by less than

5%.

B. Localized vs. Volume Oscillator

The differences in responses due to a localized oscil-
lator and a volume oscillator were investigated for the case
in which the localized oscilldtor was represented by a plane
absorber at the center of the left core and the volume
oscillator was represented by an absorber uniformly
distributed throughout the core. No significant differences
were observed between the responses to these two oscillators
up to 1500 rad/sec. However, it was observed that the
response in the vicinity of the sink appeared
to be smoothed more When the entire core was

oscillated and the sink was also moved to a higher frequency.
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C. Neutron Group Speed

It was found that differences in the magnitude of the
frequency responses for fast-group speeds of 4.36 x 100
m/sec (15) for the prototype model and 3.0 x 104 m/sec (31)
for the comparison model were negligible., However, the
smaller fast-group speed resulted in the larger phase shift
both as fhe detector was moved away from the oscillator and
as the frequency increased. This increase in phase shift
for the smaller fast-group speed was probably due to the
fact that the oscillating component of the thermai group
at any point is made up of components due to the fast group
that is being thermalized at that point and due to the
diffusion of the thermal-group oscillation from the oscillator
to that point. The manner in which these components add
fogether can cause the phase lag tq change.

A thermal-group speed of 3000 m/sec for the comparison
model, relative to 2200 m/sec in the prototype model, |
resulted in considerably less attenuation of the neutron
oscilllation. This difference increased with both distance
from the oscillafor and frequency and was caused by the
fact that the attenuation length of a neutron wave increases
as the velocity of neutrcns in the wave increases (32).

The phase shift for the larger thermal-group speed was
everywhere less than that for the prototype model except

at the oscillator where they were about the same. This is
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because it takes the slower wave longer to get from place
to place and the longer it takes the more phase shift
results. For a similar reason the sink 1s shifted to a

higher frequency for the larger thermal-grouplvelocity.
D. Dependence on Neutron Energy Group

For the model being used here a comparison of frequency
responses is possible between only two energy groups, the
fast group and the thermal group.

When the oscillatd¥ is located at position 2 and the
detector is located at position B the response of the fast
groﬁp follows that of the thermal group very closely.
However the magnitude attenuation and phase lag of the fast
group are much smaller at points A and C than 1s the case
for the thermal group at these points. This is due to the
large velocity of the fasf group and its associated larger
attenuation length. When the detector is located at
position D the fast-and thermal—group.magnitude responses
are virtually identical up to 1500 rad/sec. Above this
frequency the effect of the sink becomes dominant and the
.reSponses differ somewhat. This phenomenon indicates that
the fast response in the driven core is due almost entirely
to the oscillation of the slow group in the driven core
which has diffused across from the driving core. Similarly
the magnitude and the phase shift of the fast group at

position E are closer to the response at D than is so for
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the thermal group, Jjust as is true in the vicinity of the.
driving core.

From these results 1t seems that at the center of the
driven core virtually none of the fast—neutron'osdillation
has come directly from the driving core. This conclusion
can be confirmed by examination of Figure II.4 from Which
it can be seen that the fast mode from one fuel region is
essentially completely attenuated before it reaches the
center of the opposite core.

It can be seen from Figures V.l and V.2 that the fast-
group reSponsefgs‘strongly dependent upon the presence of
the driven core. The magnitude and ﬁhase responses show
very 1little spatial dependence until the detector is more
than half way through the coupling region; then suddenly
the presence of the driven core is felt, the magnitude
suffers attenuation, and large phase lags are introduced.
Eventually as the detector moves through the driven core
the response becomes almost space independent again.

In all of the cross-plotted frequency responses which
follow, thé parametric analysis will show results only for
the frequencies w; = 10 rad/sec, Wy = 200 rad/sec, w3 =
500 rad/sec, wy = 1000 rad/sec and g = 1500 rad/sec. Hence
these values will not be repeated on each figure. These
frequencies represent typical behavior in the range of
frequencies where convergence of the five-mode approximatioﬁ

is good and covers frequencies from the low-frequency



Figure V.1.

Figure V.2,

Space dependence of fast group magnitude
response.

Space dependence of fast group phase response.
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region almost up to the sink frequency.
Cross-plotting the reactor responses with frequency

as a parameter and location as the independent variable

"allows the spatial dependence of the effect being investi-

gated to be more easiiy observed and analyzed.
E. Coupling Regilon Size

An oversimplification of the general behavior of the
reactor frequency response might be stated as follows:

In general, the magnitude decreases and the phase lag
increases as the oscillation frequency increases and the
detector is moved further from the oscillator, Figures V.3
and V.12. These effects become more pronounced at higher
frequencies and detailed behavior is strongly dependent upon
oscillator location and core separation distance.

In particular, as coupling distance increases from 20
to 45 cm the magnitude of the reactor response continues to
decrease as the detector is moved further from the oscillator
and as frequency is increased. However when the separation
reaches 50 cm a reinforcement of the magnitude begins to
appeéar at thé higher frequencies in the vicinity of the
driven core, Flgure V.9, and this effect 1s quite apparent
by the time the core separation has reached 60'cm, Figure
V.11,

For coupling distances of 20 to 35 ecm, little or no



Figure V.3,

Figure V.4.

Space dependence of magnitude, coupling
region = 20 cm.

Space dependence of magnitude, coupling
region = 20 cm.
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BFigure V.5.

Figure V.6,

Space dependence of magnitude, coupling
region = 35 cm.

P el

Space dependence of phase, coupling
region = 35 cm.
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Figure V.7.

Figure V.8.

Space dependence of magnitude, coupling
region = 45 cm.

Space dependence of phase, coupling
region = 45 cm.
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Figure V.9. Space dependence of magnitude, coupling
region = 50 cm.

Figure V.10, Space dependence of phase, coupling
region = 50 cm,
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Figure V,11.

Figure V.12.

Space dependence of magnitude, coupling
region = 60 cm. ,

Space dependence of phase, coupling
region = 60 cm.
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phase shift is contributed at any frequency by the reactor
in a region from the center of the coupling region to the
outer edge of the driven core. This effect is shown in
Figures V.4 and V.6.

In summary it can be said that coupling distance has a
considerable effect on the detailed frequency response of a
reactor and a changé of 10-15 cm in the coupling region size

can make a considerable difference in the response.

F. Effect of Oscillator and Detector Location

on Response of the I.S5.U. UTR~10 Reactor

The fast- and thermal-flux distributions for the Iowa
State University UTR-10 reactor (I.S.U. UTR-10) are shown
in Figure V.13 for the flux tilt experimentally measured on
Dec. 19, 1967, with the cold core loaded, shim-safety rod at
8.0 inches, and regulating rod at 2.5 inches. The transverse
buckling is larger in this model than in the prototype
reactor used earlier so the thermal flux peaking 1s reduced,
otherwise the flux distributions are much alike.

This section describes the results of the calculation
of the spatially-dependent frequency response for an actual
coupled nuclear reactor, the I.S.U. UTR-10. The spatial
dependence of the frequency response caused by oscillator -
location will be examined in addition to the dependence on
detector position. There are three potential oscillator

locations of particular interest in the I.S8.U. UTR-10,
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they are: (1) 12 cm from the south side of the south core
tank, (2) in the center of a core tank, and (3) in the center
of the graphite coupling region between the two gores.

These poéitions are shown in Figure III.6 and the frequenCy
responses calculated under these conditions are shown in
Figures V.14 through V.19.

By a comparison of Figures V.14 and V.15 with V.16
through V.19 it is seen that spatial dependence becomes
important at the lowest frequencies‘when the osclllator 1s
located at 93 cm, that is, in an external refleotor. Further
examination shows that when the detector 1s at the point
of oscillation the B/{ break frequency moves from 56 to 47
to 43 rad/sec for the oscillator at positions 1, 2, and 3,
respectively; yet all three situations predict the same
break frequency of 43 rad/sec when the detector is far
from the osqillator. This fact has been recognized in
experimental work for some time (31) and oscillator
measurements of the B/{ break are normally-made with the
detector and oscillator widely separated.

The spatial dependence of the reactor response is
primarily a high frequency phenomenon, that is, 1t occurs
above the B/ break of 30-60 rad/sec for light-water
reactors; hence one is generally not intergsted in the
delayed-neutron region unless feedback is to be studied.
However, the contribution of delayed neutrons to the fre-

quency response will be included for completeness for the
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case where the oscillator is at position 2.

With the oscillator at position 2, Figures V.16 and
V.17, the frequency response looks much like that obtained
from the prototype model, however due to the larger trans-
verse buckling and slightly larger fuel loading (5% larger)

the prompt neutron lifetime is smaller, so B/{ is larger,

than in the prototype model. As a consequence, the magnl-

tude response for the I.S.U. UTR-10 reactor is everywhere
slightly larger than for the prototype model and similarly
the phase shifts are generally less than for the prototype.
When the oscillator is moved to the center of fthe
reactor the most apparent change in the frequency response
is that the sink is no longer present in the magnitude
response. The Bode plots for the oscillator at 142 cm,
position 3, are shown in Figures V.18 and V.19 and look
much like the spatially dependent frequehcy response obtained
experimentally for the NORA reactor by Hansson and Foulke
(20). This similarity is due to the fact that when the
oscillator is in the center of the coupling region 1t is
surrounded by fissile material on two sides and the graphite
transmits the thermal-group oscillation to the cores with
little attenuation. Since the reflected waves from one core
to the other are very weak the cores do not interact sighi—
ficantly with each other and the detector sees essentially

the frequency response of a reflected slab reactor.
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Although sufficiently high frequencies are not included
in these figures to illustrate the fact, the phase angles
eventually reach an asymptotic value which depends upon

the oscillator and detector location,
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VI. SUMMARY AND CONCLUSIONS

The conclusions stated below are the results obtained

from analyzing a'family of coupled nuclear reactors based

upon a UTR-10 prototype model. Conclusions which were

probably to be expected but which had not been explicitly

stated are as follows.

1.

In order to describe a coupled nuclear reactor
using Green's Function modes it is essential that a

mode(s) representing the coupling region be present.

These modes were first mathematically described by

Carter (9), who suggested they were necessary, and
subsequently proved by McFadden1 to be necessary
in the time domain by comparison with an exact
solution. This investigatidn used two, five and
seven mode representations to confirm that
coupling-region modes are also required in order

to adequately describe reactor behavior in the

frequency domain.

The delayed neutron effect is easily added to the
calculation, however as has been previously
observed (11, 28), the low-frequency response is
extremely sensitive to reactor criticality. If

the low-frequency behavior is to be accurately

1McFadden, James, Ames, Towa, Results of computer
calculations. Private communication. 1968, ’
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described, the criticality determinant must be

made as'nearly zero as the number of significant
figures capable of being carried will allow.

In the low-frequency region, below about 10 rad/sec,
the reactor response is essentially indepéndent of

spatial effects.

The following conclusions are more directly a result of

this study of coupled-core reactors,

4,

Five space modes, with one mode originating in each
region of the reactor, allows sufficient convergence
to adequately describe the frequency response of the
UTR-10 prototype reactor up to 1500 rad/sec.

The spatially dependent frequency response changes
significantly for a fixed oscillator location as

the detector is moved about. In general the

farther the detector is located from the oscillator
the greater the attenuation and phése shift unless

a sink is encountered. The frequency response 1s
also strongly dependent upon the oscillator location
with space dependence becoming apparent at lowest
frequencies when the oscillator is in position 1

and with the sink occurring only when it is in
position 2. One result of these observations is
that a consistent measurement of g// is obtained
irrespective of oscillator location if the

detector is located far from the oscillator.
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Small flux tilts have a negligible effect on the

frequency response,

A change in the coupling distance of 10-15 cm has a

pronounced effect on the frequency response in' the
range of coupling distances from 20;6O cm.

When one core is driven by a reactivity oscillation
the other responds as if driveh by an oscillating
source. The response of the driven side of the |

reactor may show a sink in the magnitude of the

response when the detector is in the driven core or

in its external reflector, for certain core éepara-
tion distances.

An increase in the thermal-neutron-group speed has
the effect of shifting the sink to a higher frequency
but causés no other significant change in the
response of the prototype reactor. A smaller fast-
neutron-group speed causes the magnitude response
in the vicinity of the sink to be smoothed consider-
ably and causes a definite change in the phase
behavior of the prototype reactor when the detector
is at position D. From analytical results obtained
here it seems that the presence of the fast group
is essentia1 to a proper description of the system
aﬁd the fast~ and thermal-neutron-group speeds

must be properly chosen if good agreement between

experimental and analytical results is to be
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achileved.

A possible explanation for the cause of the Sihk
may be due to the oscillation 1in the fast group
being propagaégd essentially instantly across the
reactor and slowing down in the driven core. A
sink occurs when the frequency. of oescillation is
such that the veloclty of propagation of the thermal-
neutron wave causes 1t to arrive at the driven core
180° out of phase with the thermalized fast wave.
The sink 1s not a characteristic of coupled nuclear
reactors but may occur in any reactor undér the
proper clrcumstances. However it seems most likely
that these conditions, such as large time delay and
strong local moderation of the fast group, would
occur most readily in coupled reactors.

The final conclusion 1s that the zero-power
frequency response of an atypical reactor should
not necessarily be assumed to be similar to the
classical point reactor transfer function with
minor space-dependent modifications. The differ-

ences could be quite substantial at high frequencies

and at distances far from the oscillator.
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VII., SUGGESTIONS FOR FURTHER WORK

The following toplcs are Suggested as areas for future
work in Which a contribution in the area investigated here
could be made.

1). Measure the spatially dependent frequency response

| of coupled-core reactors at high frequencies, > 100 rad/sec,
in order to provide a check for analytic results,.

This could be done with a‘high—frequéncy oscillator, or,
more likely would employ the use of nolse techniques (3).

2). Bévelop a mathematical model which would describe
the magnitude and phasé behavior of the frequency response
in the vieinity of a sink.

3). Investigate the effect of the distribution of
Green's Function modes on the frequency response and see
whether a criterion could be developed to guarantee that if
an approximation had converged in the time domain it could
be assured of producing a good solution in the frequency domain.

4), Extend work of this type from one space dimension
to two (16, 29).

5). Obtain a pole-zero representation of the reactor
frequency response as a function of space by casting the
reduced kinetics equations into state-variable form and
obtaining the poles and zeros as suggested by Schultz and
Melsa (36). This formulation of the response is desirable

because it is the one most useful in control-system design

(7).
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X. APPENDIX A: DESCRIPTION OF THE UTR-10 REACTOR

The UTR-10 reactor is a water-moderated and graphite-
reflected coupled-core reactor licensed for operation up to
10 -KW, It is a commercilal version of the Argonaut Reactor
which was designed at Argonne National Laboratory. Each
core consists of a 5-in. by 20-in. by 24-in. slab'containing
six fuel elements and each fuel element is an assembly of
12 MTR-type fuel plates containing fully enfiched uranium.
These fuel plates are cooled by delonized light water.

The two core tanks are'separated by approximately 18 inches
of nuclear grade graphite which comprises the coupling
region and acts as a flux trab for thermal neutrons. A
5-ft. by 5-ft. by 4-ft. thermal column is provided adjacent
to the south core tank and a smaller (41.5-in. by 30-in. by
30-in.) thermal column is adjacent to the north core and
leads to the shield tank as illustrated in Figure A.1.

An access port to the midplane of the south core tank
is obtained by means of a removable stringer near the center
of the thermal column.

The reactor is fueled by approximately 3 kg. of fully
enriched uranium, i1.e., greater than 93% U-235 with approxi-
mately equal masses of fuel being loaded into each core tank.
The inequality of loading plus the effect of the control-
rod configuration results in a maximum flux tilt in the

UTR-10 of about 1.35 based on the ratio of the average
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thermal fluxes across each core fank.

Control is accomplished'by means of two safety rods, one
shim-safety rod, and one regulating rod. During operation
the safety rods are fully withdrawn and the‘shim—safety
and regulating rod are positioned to achieve the desired
operating conditions. When the reactor is scrammed the
safety and shim—safety rods are'rapidly driven in gnd a
six-inch dump valve opens to drain the moderator from the

core.
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XI. APPENDIX B: DERIVATION OF THE EQUATIONS DESCRIBING THE
TRANSFER FUNCTION OF A TWO-POINT REACTOR

A pgir of cores is considered coupled if fiSsions in
one core may be caused by neutrons which originated in the
other core, If each of the'cores is treated as a point
reactor in which the system maintains 1ts criticality by a

mutual exchange of neutrons, then for two cores at criticality

kl(t) = kll(t) + klz(t) =1.0 (B.1)
and ‘ '

kg(t) - kzg(t) + kgl(t) = 1.0 ' (B.2)
where

ki(t) =.the‘total multiplication constant of core i

kij(t}= that part of the multiplication constant of -

core 1 due'to neutrons which were born in
~core j.
The notation and formulation of the kinetic equations
used in théjfrequency analysis of the two-point reactor
. will be that of Avery (4) and Will employ only one group of

delayed neutrons. The equations which describe the system

are .
J 98y S
11 3 = K1 (1-B)(8y+85) = Sy1 + kg0 (B.3)
0 4sy,

|

12 =gz~ = dp(1-B)(8750) = Sjp + K10 (B.4)
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0202 (18 (5 48, ) - Sy 4 i hC (8.5)

o1 @ < fa1 175127 = Sy F K tly '
as |

Lo o2 . .
20 gt = Xop(1-8)(Spy¥5p0) - By + kpo)ly (.6)
ac,
gt = B(811%815) - a0 | (B.7)
ac,, |
g = B(Spt855) - ACy (B.8)

The terms in Equations B.3 through B.8 are defined as

Jlij = lifetime of neutrons in core i which originated
in core J

Sij = production rate of neutrons in core 1 which
originated in core j |

kij = the part of the multiplication constant.in core
i due to S,. type neutrons
i +d

g = ifl kiBi

average delayed neutron decay constant

>)
]

C = delayed neutron precursor concentration.
A, Oscillation of Core One

When the response of the two-point model to a sinu-
; ' soidal oscillation of reactivity in core one 1s considered,
assuming both cores to have the same nuclear properties,

the various multiplication factors are described as follows

kll(t) = kll(o) +6k11(t)
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il

klg(t)v kle(o) +5k12(t)
ko () = kpy (0)

k22<t> = kgg(o)l.

where Klj(t>’ j = 1,2 represents a small sinusoidal oscil-
lation about the steady-state value klj(o), j =1,2. This
oscillation of reactivity in core one causes all the neutron
and precursdr densities to Dbe perturbed in the same manner,

described by

2 2 2 2
1= 5 55 "4 (5515 (0) % 08,4(8)] (3.9)
2 2

x C (t) = z {¢;(0) +sc,(¢)} . (3.10)
1=1 i=1

By substituting these perturbed densities into Equations
B.3 through B.8, collecting steady-state terms and setting
them equal to zero, neglecting products of infinitesimals

and simplifying, the equations of the system become

ass, ] : )
A TEw T (77 (1-8)-1)88, 1 +kp; (1-8)08, 548k, 1 5
+k§1 280, (B.11)
B d08)5 o 0 o
12 —gr— = K (1-8)08,, k15 (1-8) 65,5+0k) 585-065,
+k§2kﬁcé (B.12) -
Q88 .
0 21 _ .o ., 0 o
21 —g = Kpp(1-B)8S 1+ko (1-8)88, 5- 885+, 16Cy

(B.13)
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d6822

j . _ 3,0 . o) _ _ o)
on —gr = Kpp(1-8)8851+k5, (1-8)8855-08,0+kp0A 00

asc

—.___.-1—- -
T = 56811 -+ 85312 1501
asc,
—gt = POSyp + B8S,yy - 406G,
where
o]
kg = k;4(0)

S, = sii(o) + 8 (0)

i J

(B.14)

(B.15)

(B.16)

Equations B.1ll through B.16 may be rewritten in matrix

form as follows

A = KA + a(t)

where
u 7
ﬂl¥3 0O 0 0 0
0 4,0 0 0 0]
A= 10 O .2210 0 0
0O 0 0 .£220 0
O 0 0 0 1 O
0 0 0 0 0 1]
A = corles,; 8s,, 85,, 85,, 60, 6C,]
. _—'o Yy o _
kll(l B)-1 kll(l 8) . 0 ] 0
0 -1 klz(l—B) klg(l—ﬁ)
K = kgl(l-s) kgl(l-a) -1 ‘ 0
Q (e}
0 0 koo (1-8)  ky(1-8)-1
B B 0 0
|0 0 B B

(B.17)

(B.18)

(B.19)

. 3
K0 Oox
0 ki

o A

k21 OO
0 k22k
-\ 0

0 —XJ

(B.20)




101
and a(t) represents the time dependent driving function

_ e 0] o]
a(t) = coll ky S5 8k 555 000 ol . | (B.21)

This matrix driving function may be written in terms of

a single driving function if there is no flux tilt, that

is, if Si = Sg. The effective multiplication factor of a
reactive assembly may be written
Kopp = N € Df PPy | (B.22)
where
Pr = fast nonleakage probability
' Ps = slow nonleakage probability,

and the notation is that of Glasstone and Edlund (18).
For a small change'in the thermal utilization (absorption
cross section) such that £(t) = £(0) + sf£(t), where

k = 1.0 when 6f(t) = 0, then

eff
ok koppml - nep(f.o+<sf)PfPS-1 _ or (5.23)
k Kerr nep foPePy Ly
and
6 .
[ S (5.24)
fo e - 10 T
11 12
or

_ 0 0
Ok, p = ékllklg/kll . (B.25)

The matrix driving function may be rewritten
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by 159 i 1 i
kyp/%qq
0
a(t) = 0 = 6k118§'E . (B.26)
0
... O -

The description of the system is now in the time domain. To

obtain the frequency response assume

(t) = |okyq | eJut (B.27)

%11
that is, assume that the change in multiplication constant
is of magnitude 6kl1 and 1s oscillating at a frequency w.
The change of the output, 5sij, will be of the same form

as the change in the input so

63, 5 = 6§ijejwt (B.28)

where égij is a complex number which describes the phase
behavior and w is the frequency at which the oscillator and
neutron density oscillate. Substituting into Equation
B.17 and dividing by ejwt yields

joph = KA + o(t)
or

(-K + jor)k = a(t) (B.29)
where A is the complex frequency-dependent solution vector.
This equation may be solved for R by separating the vector
into real and imaginary parts and solving a real set of

simultaneéus equations or by solving directly for the Iy

vector using complex arithmetic.
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Ir
A = col[Re + jIml] T

then the magnitudes and phases for the partial sources 6811

are defined as

sy ()] < 2Ry () + 1By (u)

and phase of

ésll(w) = tan"lImll(w)/Rell(w)

The total source in core one for a given frequency is

83, = 83 + §3

1 11

(Rell + RelQ) + j(Im11 - Imlg)

and its magnitude and phase with respect to the oscillator

are

v*(Rel + Re )2 )2

|85 i+ Repo

l‘ = + (Imll + Im12

phase

-1
4] =
S, = tan (Im11+ Imlg)/(Rell+ Relz)

These identities and their analogs may be used to obtain the
various partial or total population responses.

B. Oscillation of Coupling Between Cores

To oscillate the coupling between cores a sinusoidal
driving function 1s impressed upon the multiplication

factors representing the exchange of neutrons between two
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cores. The multiplication factors then become

kyp (€)= %y, (0)
ke 5 () =k 5(0) +ok 5 (t)
iy () = kyp (0) +8ky, ()
kpp(t) = Jpp(0)

Again allowing perturbation of all of the densities Sll’ 812,

Spys Spps Oy and Cp,

kinetics Equations B.3 through B.8, and simplifying as

substituting back into the point

before, the kinetics equations become

aés
i1 _ 0 gl O (1- _8 o
11 ~qE - = K11 (1-B)8Sy 4k (1-8)88, =08, 14k R 8C,
ass ‘ (2.30)
12 .0 o T
Q12 g5 = Ko (1-8)88, i, (1-8)88,5-5C 5
O (o] (o] '
+5k12(321+822)+k12X502 (B.31)
483 -
’Q 12 _ O - o _ o O
01 —aF = Koq (1-8)88) +ks, (1-8)88, 5 4ky A0y
s 0
- 88,1 +8k,, ST (B.32)
463
L7220 g 0 (-
o2 TGE = Koo(1-8)88,y, Hiyp (1-8)88,5-05,,
o 18 '
+kJ 1 0C, (B.33)
SN - '
£ = B85, + 888, - A6C; (B.34)
d502 5
= = B8S,, + B6S,, - MOC, . (B.35)

When these equations are put into the form of B.29,

(-x+jwn)h = a(t),
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A, K, and A are found to be the same as when core one was
oscillated, however, the driving function, o(t), is different.
a(t) is now |

a(t) = co1[0 O 6klzsg 5k2is§’ 0 01. (B.30)

If there is no flux tilt and the reactivity change is made
symmetrically in both coupling terms the driving function

becomes _

(B.31)

O O +H O O

and the partial and total population reéponses‘maj be

obtained as before.
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XII. APPENDIX C: DEVELOPMENT OF EQUATIONS FOR THE GREEN'S
FUNCTION MODES

| The first part of this appendix is a review of the
method used to‘obtain the Green's Function modes as proposed
by Dougherty and Shen (13) and modified by Carter (9).

The multigroup diffusion equations may be written in

operator form

13 = v 22 (C.1)

and the solution 1is fo be expressed in the form

N
o({x,t) ¥ T

1

|t ()2 (6) | (c.2)

where the functions.¢i(x).and ai(t) are to be determined.
After the space modes, wi(x),have been determined, the
corresponding time dependent coefficients, ai(t), may be
obtaiﬁgd by using the semidirect method of the calculus of
variations (23)."

Although other characteristics have been mentioned (16),
some desirable properties of any set of space modes are that
they be "readily" calculable in complex geometries, that
they economize the expansion, and that they permit being
tailored to perturbations about which one may have a
priori information. One set of modes which satisfies these

three criteria may be generated by first rewriting Equation

C.1l as an integral equation (17).
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t x
o(x,t) - o (x) = [ [ Ratraxt (G(x,tix', e )wM(x', )
o] XO
x o(x',tt)} - (Cc.3)

where the nmultigroup opefator, L, has been redefined in
terms of a removal and a fission operator so that
= -V
L = Lr M .
The kernel of C.3 is given by the equation

(1,-7" §E) @(x,65x0,61) = 6(x=x)6(t-t") (c.4)

and G(x,t;x',t!) must satisfy the homogeneous boundary
conditions satisfied by ©(x,t). The integrand of C.3 is

- now approximated by a finite sum
G(x,tx, e ) W(xt, e )e(xt,t) =

N ' .
B0 (1) o ity (3 )i (21 g (x1) (0.5)

where

zero subscripts indicate steady state values

Go(x,x‘) is the ihitial steady state Green's Function
defined by

LrOGo<£;X,> = 8(x-x') plus the usual homogeneous

boundary conditions

Ai(x') ={unity in the ith reactor region
zero elsewhere

and
C;(t') is the time varying coefficient in the ith

region,

¢
i
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Substituting the above approximation into the integrand of
C.3 and integrating with respect to t'

e(x,t) -~ mo(x = § [I C. (t‘ ~{fxndx‘Go(x,x')vMo(x')

%o

x @ (x')8, (x')}at!] - (c.6)

o)
an equation .of the form

o(x,t) = zl v, (x)ay (t)

is obtained if the space modes satisfy an equation of the

form
X
by (x) = [ Paxie (x,x0) W (x1)o, (x0)a, (x1). (c.7)
X |
Operating on both sides of C.7 with Lro, the space modes are

found to satisfy the differential equation

L b () = [ PO (219, ()8 (1)
XO
or
Lro\pi(x) = vMO(x)cpo(x)Ai(x); i=1,2,...,N. (C.8)

This equation, C.8, is solved to obtain the space modes,
wi(x), which are used to approximate the flux. These modes
may be added together és follows

N

L, = ¥ (x)= w9 (x),
roogop 1 070
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but since
L =1L - WM
T
then
v, (x)
L s Y.(x) =L o -Lo .
ro 121 i Po o) o
Therefore
(x) = 3 4 (x) (c.9)
e (X)) = £ y.(x C.9
o) 11 1 |

and the modes must sum to the initial steady-state flux.

Equation C.6 may be written as

N t
o(x,t)-0 (x) = gy (x) [ ¢, (er)at
i=1 5
or
N : t
o(x,t) = '21 b (x) {1+ [ c(er)atr]
1=
o]

which i1s in the form desired for the approximation

o(x,t) ¥ %4y (x)ay (t)

1

M=

if *
t
ai(t) =1+ [ Ci(t')dt'. (C.10)

o}

In a similar manner the adjoint space modes can be
shown to satisfy the equation

T oD
L (x) = VMo

N (X)Ai(x); i=1,2,...,N (¢.11)
(0]

plus the usual homogeneous boundary conditions.

In order to obtain modes in the nonmultiplying regions,
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it 1s necessary to redefine the steady-state loss operator,

Lr . The kinetics equatilions can be written
o}
_ g1 20
I3 =V T | (c.1)

where L is a space- and time-dependent matrix operator and
the elements of the diagonal matrix V'l are the reciprocals
of the neutron-group speeds. At steady state-%% = 0 so

that Equation C.1 becomes

L =L - VM ' (c.12)
(o) .
where L is a steady-state removal operator and M is a
O .
neutron production operator. Applying two-group diffusion

theory to C.12 it Dbecomes
2 : -
Dp -Z,  vIp ] Dp -2, 0 0 -Zp

= -V
2 J 2
Er DS -2a ¥ D -7 0 »O

Hence the operator M will be nonzero only in regions which
contain fuel,.so that in the moderator regions the equation
to be solved becomes

L (x) =0 (c.13)

r V1

0
plus the usual homogeneous boundary conditions. This
-problem admits only the trivial sclution.

It has been shown1 (6) that in order to obtain the

1McFadden, James, Ames, Iowa. Results of computer
analysis. Private communication. 1968,
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correct time response for coupled-core reactors,a mode(s)
must be present to represent the coupling region. When a
mode of this type 1s not present and a disturbance is made
in one core, the perturbation is not correctly propagated
to the driven core and neither the time nor the frequency
‘behavior of the reacltor is predicted correctly.

.In order to reformulate the problem so that a mode is
'_generated for each région (9, 10),the L-operator can be H
rewritten as

L=, -7 (c.14)

where §;} is a removal operator and #7can be thought of as
a'pseudoproduction operator. The matrix77 must be constructed
so that there will be a nonhomogeneous term, or soﬁrce, in
each region to be represented by a mode., This may be

accomplished by dividing the L-operator as follows

(DF Q-Zr vIz ] [ Dg 2-2} 0 ]_ 2; -vié}
L Zp s 2—Za L o Ds 2—ZéJ ~p -2; |
where
S, = 5L+ &)
and
T, = Iy T T,

It has also been found (9) that the fraction of T, residing
in L) and Z; does not affect the final solution of the

problem, provided that the split is not infinitessimal.
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The new equation the modes must satisfy is

j}owi(X) =710 (x4, (%) © (c.15)

plus the usual homogeneous boundary conditions; an equationf’j
analogous to C.15 is obtained for the adjoint modés;' |

The operators of the two-group diffusion equation muéf ;€
now be defined so they will be compatible with this neﬁ
formulation for the space modes. When i1t is assumed that
fast absorption is negligible and that all fisslons are due
to thermal neutrons, the usual two-group time-dependent

neutron diffusion equations become

30, ' M
1 % 5
1 304 _ l
VEEF“'Vngs_Eé%i'%ﬁF (€.27)
M dCi
'21 (5 = B;VEp9 - 4,000 (c.18)
l:

| The precursor concentration can be eliminated as an
explicit dependent variable by first finding the response
of the ith precursor-group concentration to an impulse
function in the slow flux,éms, as follows
dC:.L |
3t = BivEpseg - M0y
The Laplace -transform technique can be used to solve for

Ci(t) after assuming zero initial conditilons.
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or

i °f
C;(8) = Buzy/(5+h )
P = "‘>‘-'
0. () = B VELe it

From this impulse response it is possible to synthesize the

precursor response to any input using a convolution as

follows

1

-

¢, (t) = p;Via ft @s(w)e'xi(t"T)dT

Then an operator Sb can be defined where
i _
A0, (8) = sy (t)
i=]1
SO0 that
M t
Sp = Vi, I A8 f- e_ki(t—T)dT
i=1 -0
and the

OCQF

L _F_v -3 - +
vg 5t = V' DiVe - R0 + VE(1-B)ep T Spfg

N
OCPS,

two-group ciffusion equation may be rewritten

%“Bf‘ = SZD§7@S - D% £.%p -
S

(c.19)

(¢.20)

(c.21)

(c.22)

(c.23)

In order to account for transverse leakage the fluxes

are assumed to satisfy the wave equation in the y- and z-

directions. Hence for the z-direction

2@ 2., _

—% + B o =0
dz z




114

or
& _ P
. 2. Tz
dz
Then the leakage rate is D——g DBQ¢. Since the total
dz
fransverse buckling is B% = B§ + B2 and since the multi-

group diffusion equations can be written

13 = V’l-%% (¢.1)

the loss terms can be regrouped to obtain the form

2 I TR R
D o .
P 7 - (24D BT) vzf(1—8)+sD. wﬁ
Zr Ds’%‘? -(2a+DsBT) 8
L X N [ S
1
ZIR N |
_ e (C.ok4)
1
o 5 ®s

It is then convenient to define an effective removal cross

section, %

re’
2
T.e = I, + DBy | (c.25)
an effective absorption cross section, Eae’
2 .
Tie = Iy + DgBrp (Cc.26)

and a fast neutron production operator, G,

G = sz(l—B) + SD (c.27)

so that the matrix L in C.1 becomes
g G
IF 2 = “pe
oxX o

b Dg = -~ T
T S e ae
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The form of the L-operator has been defined making 1t

possible to solve the equations for the space modes, Sincg

L =4, - (C.14)
° _
or
2 ' 52
D -3 G 1 D, —= - ! 0
B BXE re , B 5X2 re
2 = 2
o) . o)
5 D, —= -% _J 0 D, ~—x - &!
r 5] ax2 ae s aXZ ae
n _
Zre G
"
L-Zp 2a

Equation C.15 for the direct modes

ir0¢i<><> = Mo 0, (x) (c.15)
becomes
5, 22 r 0 ¢ " g
F o2 Zpe F Zre P
2 = b (%)
—_— - _ 1"
O DS 2 Zée LFS Er 2ae ®s
oxX _
(c.28)

and the equation for the adjoint modes
T .+ _ T +
'irowi(x) = Mg, (x)

becomes

-\2 -
[o]
DF ax2 —zée' 0 ( re
L = A, (x)

(c.29)
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Finally the two-group diffusion equations obtain the

form

2
S22 g+mp-viAE (¢.30)
2 >t
oX
" which i1s the form required for substitution into the func-

tional, II.8, used to obtain the time coefficients. Here

o@=~DF' o}-’ ﬁ_CPF]

. 10 'Ds_} $S_j

—Ere G ;E 0
H = , viz
1
| Zn -Za& Y Vza
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XIII. APPENDIX D: SIGNIFICANCE OF KOAO BEING ZERO

A natural consequence of the linearization of Equation
IT.19 is the observation that the matrix product KOAO equals
0. This fact is worthy of special attention because 1t
provides additional insight into the proﬁlem and also
because it provides a check of computational accuracy.

For simplicity of exposition, consider a two-energy-
grdup two-mode representation of the reactor. For this
case the Ko matrix is expressed on the following page.

At the steady-stéte condition all the elements of AO
are unity and for this heuristic example the product KOAO

yields a 4 x 1 row vector, the first element of which is

+ _ +
<§ 3V Sy Obpy _ Oipp

+ PR __fe
ox DF X + ’J"FlzreVFl X f  ox

i+ -+ -+ _
+ Vg Zae Ve Vg vEplgy + Vg VEplp ) = 0

or

a¢;1 ¥ 4 e o\
<} 3% Do53 7 VpTpe®r ¢F1v2f@;> =0
The other N-1 equations for the fast group are identical
except for the subscript of the fast-adjoint mode. This
equality requires that when the approximate solution to the
fast-diffusion equation is weighted with the Jjth fast-
adjoint mode the result is zero. This implies that there

is no net rate of change of importance of "type j" in the

kreactor. When all modes are considered this corresponds



gy gy Vp1 o Ve e
5 O Tax TVmtrelm T 23 P —5x f“’Fere‘l‘Fz
a:iE Dg aiil +w;2$rewFl - a:iQ DF'Eggg +¢;QEPG¢F2
Vo TV Vo1 Zpbpo
v iy VaoTnimp

Matrix D.1. K A, matrix for the two-mode case.

81T
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Matrix D.1 (Continued)

+
by VEp g0

+ 5
YpoYeeVeo

+
aﬂ{rsl D Eliﬁ?_ +‘I!

X 5 9Ox s81° devSE
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to a classical definition of criticality (4) which states
that the net rate of change of importance in a critical
reactor is zero. This argument applies to each neutron
energy group in the approximation,

The product K A, can be used as a check of the compu-
tational accuracy by actually evaluating the matrix product
to see how near it is to the zero vector. This introduces
no significant problem since fhe elements of Ko'must be
calculated anyway to obtain the frequency response., It 1s
necessary to make the product, KOAO,'és;small as possible
because if it is not sufficiently small the convergence of
the solution is destroyed. For the model studied, if each
of the elements of KOAémwas not several orders of magnitude
smaller than the largest elements of Ko the effect was

observable in the solution and an error could be suspected.
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