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I. INTRODUCTION 

The purpose of this thesis is to calculate the spatially 

dependent frequency response for a realistic model of an 

actual coupled-core nuclear reactor, to determine what 

factors are important in affecting this frequency response, 

and to provide a qualitative explanation of the results. 

The reactor to be investigated is the Iowa State University 

UTR-10 reactor. A brief physical description of this 

reactor is presented in Appendix A and its most important 

nuclear parameters are presented in Table II.1. 

In this study the term coupled-core reactor means that 

the reactor under consideration will consist of two distinct 

fissionable assemblies, core one and core two, which are 

physically coupled in the sense that some neutrons causing 

fissions in core one originated in core two and vice versa. 

This relationship is also true between any two adjacent fuel 

elements in a reactor, but the idea is most useful when 

the number of assemblies under consideration is relatively 

small and when each has an appreciable multiplication factor 

when standing alone. 

The reasons for studying oscillation tests are well 

summarized in a statement by Gyftopoulos (19), who said, 

"Oscillation tests, or, in general, small perturbation tests 

are performed to measure transfer functions either to design 

the reactor regulating system or to investigate stability." 
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However, "before going into the frequency response of coupled 

reactors a review of the history of the Interest in reactor 

transfer functions will be outlined. 

The transfer function of a nuclear reactor was first 

measured by Harrer, Boyar, and Krucoff (21) at Argonne 

National Laboratory in 1952 when they applied the rod-

oscillator technique to the CP-2 reactor and obtained good 

agreement with their one-point model at the low frequencies 

(up to 20 rad/sec) which were investigated. 

The point model is an adequate representation for a 

nuclear reactor as long as the reactor flux shape does not 

differ significantly from the fundamental mode, or steady 

state flux shape. However, as reactor size increases this 

criterion fails at increasingly lower frequencies. Hence 

there is interest in the spatially dependent reactor response, 

or alternately, in the ability to locate a detector in a 

reactor at a position where the point-model response is 

closely approximated. 

Interest in the frequency response of coupled-core 

reactors was also first reported from Argonne National 

Laboratory (4, 5) where in 1959 Baldwin (5) attempted to 

describe the behavior of the Argonaut reactor by writing a 

separate diffusion equation for each core and including an 

interaction term with the source in each equation. This 

interaction term in one core was proportional to the flux 

in the other core at a previous time, T, where T is a delay 
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time characteristic of the time it takes a disturbance to 

travel from one core to the other. The biggest problem with 

this model Is that it requires knowledge of the coupling 

coefficient for each core and the delay time between cores. 

These are not quantities that are readily available for most 

reactors. 

Although done earlier, Avery's work (4) was considerably 

more elaborate than that of Baldwin. Avery wrote a point 

neutron kinetic equation for each neutron population group 

in a coupled reactor. These groups were based upon an 

identification of neutrons by the core in which they 

originated and the core in which they were lost to the chain 

reaction. This led directly to the definition of partial 

lifetimes, multiplication factors, and fission sources. 

These quantities were defined from general definitions of 

the total quantities as adjoint weighted integral parameters. 

That is, the parameters which go Into the kinetics equations 

are integral properties obtained by adjoint weighting and 

integration over the reactor. Hence, this method also 

provides a means for finding the reactor parameters to be 

used in the kinetics equations. 

When a local perturbation is made in a very large 

nuclear reactor or when fast local changes are made in 

smaller reactors the time-dependent reactor flux shape is 

not well represented by the fundamental mode. For these 
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cases a space-dependent model becomes very desirable. 

Gyftopoulos (19) has shown that the transfer function 

of a reactor is not spatially dependent when the reactivity 

is computed in a consistent manner. In this paper what is 

calculated is not a spatially dependent transfer function 

but the response of a coupled reactor to an oscillating 

absorber, 

G(x,x ' , jw)  =  A9(x ,x ' , jw) /G%a(x ' , jw)  

where x represents the detector location, x '  represents the 

oscillator location, and m is the frequency of oscillation. 

The first attempt made to describe the spatially 

dependent response of a reactor to an oscillating absorber 

was in a classic paper by Weinberg and Schweinler (4l) in 

1948. 

Since that time almost all efforts aimed at describing 

the spatial dependence of the reactor response have been 

by means of a modal expansion technique In which the space-

and time-dependent flux, V(x,t), is approximated'by a series 

of products of space-dependent expansion modes, \[;^(x), and 

time-dependent coefficients, a^(t). The flux is approximated 

by 

N 
9(x,t) af Z (x)a. (t) . 

1=1 ^ ^ 

There are two steps in this type of analysis: the 

selection of the space functions and the determination of 
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the time coefficients. In this discussion several versions 

will be described corresponding to different methods of 

chosing the space functions. 

The space modes used for synthesizing the flux may be 

either orthogonal or nonorthogonal and the simplest set 

of orthogonal modes are solutions of the Helmholtz equation. 

+ B^cp = 0 

Use of these solutions was proposed by Poderaro and 

Garabedlan (l4, 15) but they have the disadvantage of being 

very difficult to obtain for complex reactor geometries. 

Other sets of basis vectors which are also elgenfunctions 

are the lambda and omega modes (2$, 26). The lambda modes 

are obtained by solving an eigenvalue equation of the form 

Ltn = ̂  

Where the L-operator is the multigroup removal operator and 

the M-operator is the multigroup production operator. The 

omega modes are obtained by solving an expression of the 

form 

where T is the diagonal matrix whose elements are the 

reciprocal neutron group speeds. These modes have been 

used to solve problems but are not very convenient since 

they do not have the property of finality. According to 
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Kaplan (26), a set of modes has the property of finality if 

the time coefficients of the modes are independent of the 

number of terms used to approximate the flux. That is, if a 

set of modes has the property of finality the time coeffi­

cients of each mode can be determined separately. This is 

advantageous because it is easier to solve a single equation 

than a set of simultaneous equations. Kaplan shows how to 

construct such modes and his natural modes satisfy an 

equation of the form 

Where the L^-operator is the steady-state operator which 

results when the multigroup equations are cast into the form 

Lcp = ^ 

where 

cp = col[cppCPgC] . 

The modal analysis techniques previously described use 

eigenfunctions of the unperturbed problem as the basis 

functions of the solution. Another possibility, but which 

uses non-orthogonal modes, is the application of the 

"synthesis" technique. The idea behind this method is that 

if a series of asymptotic shapes, ij;^(x), are chosen from the 

solution of simpler but related problems, a set of "mixing 

coefficients", a^(t), can be obtained so that an approximate 
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solution to the problem at hand can be constructed. 

The type of space modes used in this paper is another 

set of nonorthogonal modes called Green's Function modes, 

which were first introduced by Dougherty and Shen (13). 

To obtain these modes the reactor is divided into regions 

and the fission cross section is everywhere set equal to 

zero. A distributed source is then introduced into each of 

the regions--a fission source is used in multiplying regions 

and a pseudosource is introduced into nonmultiplying regions 

(see Appendix C)--and the resulting flux shape is taken as 

the mode which originates in that region of the reactor. 

An eigenvalue problem does not have to be solved to obtain 

these modes and they can be tailored to suit a problem about 

which one may have a priori knowledge. That is, the spatial 

distribution of the modes is determined using engineering 

judgment. The advantage of being able to distribute the 

modes at will is that they can be located in higher density 

in regions where the flux is expected to vary most rapidly 

and this should result-in a better solution than would be 

otherwise possible. In particular it has been shown (9) 

that the solution to problems involving localized step 

changes in reactivity converges much faster for Green's 

Function modes than for Helmholtz modes. 

Most of the work using modal analysis has centered 

around time-domain investigations rather than around studies 
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in the frequency domain and the limited published work 

related to reactor frequency responses deals largely with 

experimental (20) and analytic (11, l6) results for the 

heavy-water moderated NORA reactor. Other work includes 

Loewe's (31) investigation of the differences between the 

frequency responses obtained by using the Telegrapher's 

equation and the diffusion equation for both bare and 

reflected light-water and heavy-water moderated slab 

reactors. Loewe found the differences in responses predicted 

by the Telegrapher's equation and the diffusion equation were 

negligible below lo'^ rad/sec but he presented limited 

results dealing with detailed space dependence of the 

reactor frequency responses. 

The only published work which includes spatially 

dependent frequency responses for coupled-core reactors is 

that by Carter and Danofsky (10), who studied a tightly 

coupled unreflected reactor. The main objective of their 

investigation was to study the convergence of Green's 

Function modes and to investigate the use of coupling modes 

in nonmultiplying regions. As a result, although they 

published some frequency-response curves they made little . 

comment about them. 

In light of the little published work dealing with 

spatial effects in coupled nuclear reactors and in view of 

the increased consideration being given to coupled fast-

thermal power reactors and the clustering of nuclear rocket 
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engines, this seems to be an appropriate area for further 

study. It is hoped that an effort to determine what 

reactor parameters have an important effect on the 

spatially dependent frequency response of the UTR-10 

reactor might also be useful, to others in other areas of 

work. 
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II. METHOD OP ANALYSIS USING GREEN'S FUNCTION MODES 

A, Determination of Criticality 

The method used in applying Green's Function modes to 

the frequency analysis of a nuclear reactor begins much the 

same way as other modal techniques, First a reactor model 

and Its associated nuclear parameters are chosen and the 

steady-state flux and adjoint distributions are obtained. 

The prototype reactor model used in this study is shown in 

Figure.11,1 and represents a one-dimensional idealization 

of the Iowa State University UTR-10 reactor. 

GRAPHITE 
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REFLECTOR 
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Figure II.1. Dimensions of UTR-10 reactor. 

Table II.1 contains the two-energy-group nuclear data 

(2j 35J 39) which were used to represent the prototype 

reactor. In this diffusion approximation fast fission and 

absorption in the fast group were considered to be negligible. 

The exact form of the representation used is given by 

Equations C.l6, C.iy, and C.is} For a first approximation 

\see Appendix C. 
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it was assumed that the U-235 content was the same in each 

core tank and unless otherwise stated this will also be the 

case in all other examples. It will be seen later that 

none of the conclusions are changed for small flux tilts 

which might result from unequal loading. 

The first estimate of the transverse buckling, which 

was used to describe the leakage of neutrons through the 

two sides and top and bottom of the reactor, was obtained by-

making a horizontal and vertical flux map through a core 

tank, extrapolating the fluxes to zero and obtaining the 

buckling in each direction by assuming the flux obeyed an 

equation of the form 

cp(2) = A sin BgZ-v 

2 
The total transverse buckling, is the sum of the two 

components 

= B̂  + = 0..00216 cm-2 . 
1 y z 

Table II.1. Reactor parameters 

Reactor Region 
Parameter north 

reflector 
north 
core 

coupling 
region 

south 
core • 

south 
reflector 

cm 1,14 1.30 I.l4 1.30 I.l4 

cm 0.843 0.121 0.843 0.121 0.843 

cm~^ 0.000284 0.0716 0.000284 0.0716 0.000284 

cm~^ 0.00296 0.0210 0.00296 0.0210 0.00296 

cm~^ 0.000 0.0499 0.000 0.0499 0.000 
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At crltlcality the solution of the diffusion'equation 

and its adjoint must satisfy conditions requiring (l) that.' 

the fluxes and adjoints go to zero at the extrapolated 

"boundaries of the reactor, 

5(0) =©(285) =0 B+(0) = 8^X285) =0 (II.1) 

(2) that the fluxes and their currents be continuous at all 

internal material interfaces. 

ffi(x=x.) = S(x=x't) 
J J 

@'̂ (x=xl ) = £n'̂ (x=x̂ ) 
J J 

,4- ' (11.2) 

(11.3) 

where 

jer _ 
J  

Dp. 0 

0 D. 
ffi = 

cp. 
? 

CO, 

s + 
"4" 

and the x. correspond to the reactor material interfaces 

and (3) that the fluxes m(x) and S"^(x) be finite and non-

negative . 

When the homogeneous boundary conditions, II.1, and 

the continuity conditions, II.2 and 11.3, are applied to 

the two-group diffusion equations a 2n x 2n set of homogeneous 

equations results 

Qc = 0 (II.4) 

where n is two times the number of internal material inter­

faces plus two. The reactor is adjusted to criticality by 
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changing a parameter, usually the thermal absorption cross 

section, so that the determinant of the coefficient matrix, 

Q, is zero. 

Since the set of parameters which makes the reactor 

critical is now specified, the solution of the two-group 

diffusion equations may be evaluated in each region of the 

reactor after solving for the matrix of coefficients, _c, 

in II.4. From this solution vector the fast- and thermal-

group fluxes can be calculated. 

A similar procedure is followed for the adjoint system. 

Typical shapes for the neutron flux and adjoint distributions 

are shown in Figures II.2 and II.3 for the prototype reactor 

of this study. 

A parametric analysis was made on this prototype model 

and it was found that both the transverse buckling and 

coupling-region size had pronounced effects on the flux 

and adjoint distributions. As the transverse buckling 

was Increased, the leakage from the reactor increased and 

the most pronounced effect was to reduce the -peaking of the 

thermal flux in the reflector regions. Similarly, when the 

transverse buckling was decreased the thermal flux peaked 

more in the reflectors because fewer fast and thermal 

neutrons were lost to leakage. Changing the size of the 

coupling region caused the thermal flux to Increase slightly 

as the cores were moved closer together and caused the fast 

flux to decrease less in the coupling region. 
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Figure II.2. UTR-10 prototype reactor fluxes. 
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Figure II.3- UTR-10 prototype reactor adjoint distributions. 
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The adjoint function. Figure II.3, is frequently called 

the importance function and may be thought of as a relative 

measure of the worth, or importance, of a neutron in sus­

taining a chain reaction (24). As the cores were moved 

together the slow adjoint distribution changed little while 

the fast adjoint distribution became much flatter in and 

between the cores. The fact that the fast adjoint was almost 

constant in and between the cores suggests that a fast 

neutron at any point in these regions has about the same 

worth for sustaining the chain reaction. 

When a flux tilt was desired, it was produced by 

selectively changing the thermal absorption cross section in 

one core and adjusting the cross section in the other core 

until the reactor was critical. This caused the reactivities 

of the two cores to be different and resulted in the flux 

tilt. For small tilts, 1.4:1 or less, the characteristics 

of the flux shapes were not changed but only shifted in 

magnitude relative to one another, as is illustrated in 

Figure ¥.13. 

B. Evaluation of Space Modes 

The basic assumption of modal analysis is that the 

flux can be represented by a sum of products of space-

dependent modes and time-dependent coefficients 

N 
cp(x,t) S 1. ( x ) a .  (t). 

i=l ^ ^ 
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These space modes are obtained by solving Equations 0.28 

and C.29 from Appendix C. If N, the number of modes used in 

the approximation,is chosen to be five so that one mode is 

present to represent each region of the prototype reactor, 

the set of modes for the fluxes and adjoints illustrated in 

Figures II.4, II.5, II.6 and II.7 is obtained. To minimize 

confusion only the modes representing the first three 

regions of the reactor are illustrated except in Figure II.4 

where all five are shown. For the symmetric case being 

considered, the modes representing regions 1 and 2 are 

mirror Images of those representing regions 5 and 4 

respectively. 

The Green's Function modes in themselves contain a 

considerable amount of information about, the reactor. 

Figure II.4 is a graph of the fast-flux modes where the 

wide modes representing-the fuel regions, regions 2 and 4, 

Illustrate the effect of the large diffusion length of 

fast neutrons. This allows them to be present In signi­

ficant numbers relatively far from where they originated.. 

The modes representing regions 1, 3, and 5 are negative 

and much smaller than the positive source modes of regions 

2 and 4. These reflector modes have been plotted to a 

different scale so that their shapes can be more easily 

seen and they are negative because of the negative fast-

neutron sources in these regions. That is, fast neutrons 

are removed from the fast group in the reflectors by 
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leakage and by slowing down to the thermal group. 

Figure II.5 represents the thermal-group modes and 

illustrates the effect of the difference in the diffusion 

coefficient and cross section between the multiplying and 

nonmultiplying regions. An effect of the large absorption 

cross section in the fuel is that the reflector modes are 

essentially completely attenuated in passing through the 

fuel regions. This implies that the reflector regions are 

decoupled from each other as far as direct exchange of thermal 

neutrons is concerned. Consequently a thermal source placed 

in one reflector would be completely attenuated in passing 

through a fuel region. However, this applies only to the 

original source neutrons and not to any progeny produced by 

fission within the core. The thermal-group modes for the 

reflector regions are positive and caused by the thermal 

neutron source due to the slowing down of fast neutrons in 

these regions. 

From Figure II.6 it can be seen that the fast-adjoint 

modes are similar to the fast-flux modes except that the 

adjoint modes for the fuel regions are more strongly peaked. 

This reflects the fact that loss by fast leakage is only 

slightly less than loss by fast removal in the moderator. 

In the fuel^ removal by slowing down dominates and production 

of thermal neutrons in the fuel is very important in 

sustaining the chain reaction. The most obvious difference 

between the fast-adjoint modes and the fast modes is that 
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the fast-adjoint reflector modes are positive. This 

indicates that a fast neutron in the reflector has a 

definite worth to the system and reflects the fact that 

absorption in the direct system results in a source in the . 

adjoint system since the two are duals of each other. 

The slow-adjoint modes of Figure II.7 illustrate many 

phenomena similar to those discussed above so the arguments 

will not be repeated.' 

C. Synthesis of the Frequency Response 

The technique used to obtain the frequency-dependent 

coefficients of the space modes is the-s-imidirect method of 

the calculus of variations. In applying this technique the 

approximations for the fluxes' 

N 
cp(x,t) = s ijt. (x)a. (t) (II.6) 

i=l ^ 

and for the adjoints 

9+(x,t) = Z $^Xx)a+(t) (II.7) 
i=l ^ ^ 

are taken as the trial functions to be substituted into the 

functional, F, of Equation II.8 and the Euler-Lagrange 

equations for II.8, which are the equations defining the 

coefficients of the space modes, are the reduced neutron 

kinetics equations. 

After substituting the trial functions, II.6 and II.7, 
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into the functional, the procedure is to integrate the 

functional with respect to space, take the variation of the 

reduced time-dependent equation with respect to the adjoint 

variable, set the variation equal to zero, and solve the 

resulting set of equations for the frequency-dependent 

coefficients of the direct system. 

The functional used by Dougherty and Shen is a modifi­

cation, to allow a natural-current boundary condition, of a 

functional first proposed by Selengut (37). The modified 

functional is 

,T 

= J J "dtdx{S^^ v"-^ + 
T Xv n 

T 
+ -1 S3 

T 

at ÔX 
O X 

- g HG] . 

. (II.8) 

where 
T 

2+ = [cppcpg] and S = colCcp^cp^] 

Substitution of the representation of the two-group diffusion 

equations from Appendix C into Equation 11,8 gives 

T X, 
= I I *dtdx([ç+ç+] 

O X. 

1—1 

0 
5 

_0 at 
JPs 

, d r + +-| 
Dp 0 

0 D. R 
ÔX 

cp. 
F 

cp. 
L ̂ r ^ae. 

% 

(II.9) 

Multiplying out the matrix form of the functional, P 

becomes 
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+ +  -,  /  +  -1  -1  
= ; ; dtdx(vpv- -gt- + V V - -, s s St 
O 

ôcpp ôcp_, Scpg ô'Pg ^ ^ 

+ asr % ~ w "Sir "p ̂ rê F " 

- cPgl^Pp + ̂ jSae'^s) • 

To simplify exposition, the approximation II.6 

- N 
ç(x,t) = 2 * (x)a (t) 

i=l ^ ^ 

will be rewritten in an equivalent matrix form as 

cp(x,t) = ij,(x)a(t) , (II.11) 

where 

^(x) — [ J \li2 (^) •> '•') (11.12) 

and 

a^(t) = [a^(t),a2(t), ..., a^(t)] . (II.13) 

Substituting this simplified description of the approxi­

mation into the integrand of 11.10 yields 

P = j'f"atdx(4ajv-l  ̂

 ̂ °'H'P îjjg ++ + + 
+ aF" ®P̂ P "Sx" ®P """ 3i~ ̂ 8̂ 8 sF" •p̂ p̂ e'̂ p̂ p "'i'P̂ P®'!'s®s 

- WVp + *X^ae*s^8) 

and integrating out the space dependence leaves the reduced 

functional 
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+ 

F = /dt ( 47) + 

o 

 ̂4% ̂  ̂p) + 0- <\ s) + (*X:re*P^^ 

- (»P4«»s%) - (•>XVP) + (•>Xe»s^s) ) ' (11-15) 

Which Is a function of only one Independent variable, time. 

Where 

^(x)\ = J f(x)dx (II.l6) 

reactor 

The variational method now allows the evaluation of the 

coefficients of the direct modes "by taking the variation of 

the functional with respect to the adjoint time-dependent 

coefficients and setting these variations equal to zero. 

This yields equations of the form 

ÔF /+ -Ix ^^1 D 
"+ at •*" ÔX F ÔX 

aa* \ 1 
^1 

^p^^re'l'p^p ~ ^ (11.17) 

and 

D, a 
aa+ \ B B at ax s ax s 

Now let A = col[aj,ag] and represent ~ as Â. Then the set 
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of equations represented by Equations 11.17 and II.l8 may 

be written as 

AA = KA (II 

or in expanded form 

0 

0 

, 4" 

JASR % ÔX + 

a •P 

a* 

-D. 
s . 

ÔX s ax ^s, ae s./ . 
. J 

To simplify the writing of the K matrix let 

\ 1 J / iJ 

a^p ^ TV 

? " \"d5r ÔX Vp^SreVp /j. j 

" =<•'>3)13 

C = 

ai 
+ 

/ 'i n **3, _ \ 
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so that 11.19 becomes 

>
- 

' 

0
 1 r* -1 

-{ u 
. 

V 

'
0
 

>
 

CO
 

1 /s. _ C -n_ _^s_ 

(11.20) 

The time dependence of the slow absorption cross 

section is assumed to be of the form 

îjt) = Sjo) + J lot (11.21) 

where I! (o) is the value of the cross section at which the 3. 

reactor is just critical and represents a .sinusoidal 

oscillation of magnitude AZ and frequency w. The matrices 

\i and T] may be expanded into components as follows 

\ 
iJ 

+ At S 

ôi!i 

n = tIq + Ari(t) = 

+ 

^i 

^i ̂  ̂ j/ij 

D Sx s ôx Si as'Sj/Zij 

and the operator can be rewritten to allow a convenient 

evaluation of the delayed-neutron contribution to a 

sinusoidal driving function. Prom Appendix C 

• M t \ (i-
= vSj. E_ J »g(x,T)e'lA - 'ar f - r i  

and in a general modal representation of the problem 
N 

CO (X̂ T) becomes S 1(1 (x)a (T). Since small sinusoidal 
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perturbations are made, the reactor response will be 

approximately linear and the output will be of the same form 

as the input. This allows the expansion of the vector, 

A(t), in terms of an initial steady-state component, A(0), 
/ \ A i (jU"j3 A 

and a perturbed component, AA(t) = Ae*^ , where A is a 

frequency-dependent complex number. For a particular mode 

then 

a  ( t )  =  a  ( O )  +  i a  ( t )  ( 1 1 . 2 2 )  
J J J 

and the precursor concentration from a single modal component 

of the flux is 

M t 

J J J 1=1 J 

+ aa, (11.23) 

Where /^a (t) represents the time-dependent portion of a.(t). 
s J 

Since a (O) = 1, the integral in 11.23 can be rewritten as 

+ j^aas(t)e-^l(t-^)dT (11.24) 
—CO -co J 

and the first Integral in 11.24 can be evaluated directly 

g-lit /  = e-^i" (^ - f^) .  ̂ . (11.25) 

The second integral in 11.24 can be evaluated after observing 

that for the sinusoidal driving function 

ia (t) = â eJ™* , (11.26) 
J d 
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where is a complex variable which is a function of 
j 

frequency. Substitution of 11,26 into the second integral 

of 11.24 yields 

— CO 

'1 

Therefore the delayed-neutron contribution, (x)a (t), 

becomes 

M  T  a . ( \ , + j w )  
(x)a (t) = ij; (x)vZf S ^iPiDr- + gj^t. 

D'Sj Sj Sj i 1=1 1 1 \ ^2 ̂  ̂2 ® ] ' 

(11.28) 

or for one group of delayed neutrons 

8r^s (x)a (t) = (x)vS.3 + (-g g 
^ Gj 8j .8j 1 ^ 

wvz XB 
+ J 2 2) . (11.29) 

\ + U) 

The delayed-neutron contribution consists of a steady-state 

part plus a real and an imaginary oscillating component. 

These last two contributions are frequency dependent and 

their contributions become negligible when the frequency, w, 

is large compared to the delayed-neutron decay constant, X. 

This is consistent with the usual assumptions and observa­

tions . 
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It is convenient to rewrite the K matrix as "being due 

to a sum of different contributions, that Is 

"-5 Vd 
+ 4-

0 0 

.  C -(r^+ArKt))_ -V _0 0_ _0 -A'n(t)_ 

or 

K = Kp + + . ÔK 

where represents'the contribution due to prompt neutrons 

represents the contribution due to delayed neutrons 

6K represents the contribution due to the oscillating 

absorber. 

The form of Equation 11.19 now becomes 

AÂ = [K + Kj + 6K]A . (11.30) 

Substituting the form of the solution into 11.30 gives 

+ ÔK][A(0) + . (II.3l) 

Multiplying 11.31 out, neglecting products of second order 

terms and recognizing that 

KpAo + = Kp + = « 

Equation 11.31 reduces to 

Prom the definition of 6K 

"O 0 
ÔK = 

Lo -

= % 

(11.32) 

(11.33) 
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so that substituting 11.33 into 11.32, the linearized 

equation becomes 

[jwA - (Kp+Kd)]A = %AQ. (11.34) 

which in expanded form is 

Ç+JUJAT 

L -C 

'P - (^p+^d)' 

lo+JwAp J 

Q-F ~0 

_-ÔTl(t)_ 
(11.35) 

This equation can be solved directly for the complex 

oscillatory component of the flux from which the frequency 

response can be synthesized. 

D. Block Diagram of Method of Solution Using 

Green's Function Modes 

In order to clarify the procedure described in the 

previous three sections, the steps performed in this analysis 

are summarized below in block diagram form. 

-No 

Yes 

Is determinant zero? Increment cross 
section. 

Evaluate criticality 
determinant. 

Determine reactor parameters. 

Evaluate coefficients 
for adjoint flux. 

Calculate adjoint flux 
for each energy group. 

Evaluate coefficients 
for direct flux. • 

Calculate direct flux 
for each energy group. 
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Using frequency dependent coefficients 
synthesize reactor frequency response 
for detector of position desired. 

Specify new 
oscillator location. 

Specify new 
detector location. 

Yes, new Yes, new 
detector 
location 

• oscillator 
location 

No 

STOP 

Calculate direct modes 
and their,derivatives. 

Calculate adjoint modes 
and their derivatives. 

Is frequency response under 

Check to insure that 
direct modes sum to 
steady state flux. 

Determine coefficients 
of modes using flux 
coefficients. 

Determine coefficients 
of adjoint modes using 

Check to insure that ad­
joint modes sum to steady 
state adjoint flux. 

Multiply appropriate modes and 
derivatives of modes together 
and integrate over each region 
of reactor. 

Weight integrals with appropriate 
nuclear parameters for each region, 
construct A and K matrices, and 
calculate frequency dependent 
coefficients for a given oscillator 
position. 

If a new reactor geometry or new material properties are 

required the calculation must begin at the beginning again with 

evaluation of a new criticallty determinant for the system. 
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III. COMPARISON OF RESULTS PROM VARIOUS MODELS 

A. The One-Point Model 

The one-point model is the simplest description possible 

for a nuclear reactor and is presented as a reference to 

which the behavior of other descriptions can be compared. 

This comparison will be only heuristic and not in the hope 

that other models will duplicate the results of the one-point 

model. 

The transfer functions considered in this study repre­

sent reactors in a state of power equilibrium. That is, the 

reactors are delayed critical. Some analyses have been 

performed for reactors in a state of period equilibrium 

and their transfer functions have been found to differ 

considerably from those of reactors at the steady state 

(8, 34, 38), but this will not be of concern here. 

The well known one-point neutron kinetics equations 

including delayed neutrons are 

an^ = n(t) + (III.l) 

- 'yCift) • (III.2) 

Applying the usual approximations of 

keff(t) = kgff(o) + akeJwt (III.3) 
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and M=l,'the reactor transfer function can be shown to be 

and the straight-line approximation of the Bode plot for 

this transfer function follows 

\ 
-90 

B. Avery's Two-Point Model 

1. Oscillation of a core 

The equations for the transfer function of a two-point 

reactor are derived using Avery's notation (4) in Appendix B. 

These equations were solved using the parameters of the 

UTR-10 prototype and the transfer functions and partial 

responses for a reactivity oscillation in core one are shown 

in Figures III.l, III.2 and III.3. 

The response of core one, where it is the driving core, 

is shown in Figure III.l. This response is quite similar to 

that of the one-point model with breaks in the magnitude 

occurring at X and ?,/l rad/sec and with the slope of the 

magnitude curve being about 20 db/dec in the vicinity of the 

break and almost 20 db/sec at its asymptotic slope. 
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The phase "behavior is also much like that of the one-

point model except for the small hump in the several hundred 

radian region, and except for the very-low frequency behavior 

The decrease in the phase lag at very-low frequencies is 

characteristic of the phase behavior of subcritlcal 

reactors (28) and has also been observed when the two-

point model is used to describe coupled fast-thermal systems 

(33). 

The total source in core one, is due to the sum of 

component sources due to neutrons in core one which origin­

ated in core one, and due to neutrons in core one which 

originated in core two, S^g. 

^1 " ̂11 ^12 

Since, the type neutrons are the predominant type in core 

one the response of these neutrons is essentially identical 

to the overall response of the core, hence their response 

will not be plotted separately. However, when the response 

of S^2 type neutrons is calculated. Figure III.2, an appar­

ently previously unobserved behavior is evident. Instead 

of falling off at 20 db/dec after the p/j break, the 

magnitude continues to roll-off to about 60 db/dec before 

quickly recovering. This recovery of the magnitude produces 

a sink at about 800-900 rad/sec. 

A sink will be said to occur in the magnitude of the 

reactor response if the slope of the magnitude changes 
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sign from negative to positive at any point and the sink 

frequency is the frequency at which the sink occurs. 

The phase behavior of the 8.g population is much like 

that of the or populations until the sink frequency 

is approached. Near the sink the phase lag undergoes a 

rapid decrease from about -130° to about -l8° before it 

begins to increase again. Once past the sink the magnitude 

approaches an asymptotic slope of 2 0 db/dec and the phase 

becomes asymptotic to -90°. 

A response similar to that of the population is 

also found in the space-dependent model. The mechanism 

for the cause of both appears to be similar and a mechanism 

to explain the space-dependent results is proposed in 

Chapter IV. In the two-point model the sink occurs in 

neutron population group 12 but it is in the equivalent of 

the 21 group that the sink occurs in the two-group space-

dependent model. Since the shapes of these responses are 

similar, a similar mechanism could cause them both and a 

time delay in the system seems capable of qualitatively 

describing both results. In the two-point model a sinusoidal 

oscillation in the neutron density is thought to propagate 

from core one to core two and return to core one l80° out 

of phase with the neutron density oscillation being 

generated in that core by the reactivity oscillation. This 

results in a partial cancellation of the neutron-density 

oscillation and causes a sink in the magnitude of the 
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reactor response. 

Figure III.3 represents the response of core two to a 

sinusoidal oscillation of core one. The high-frequency 

response of the driven core, core two, is a result of the 

input signal—the output from core one--being filtered again. 

This produces a 40 db/dec slope in the magnitude beyond the 

P/& break and an asymptotic phase lag of -l80° instead of 

Just -90°. 

The response of the Sgg population group is almost • 

Identical to that of the response except that at high 

frequencies the phase lag continues to increase and does 

not approach an asymptote and the magnitude asymptotically 

approaches 40 db/dec. As would be expected the response 

exhibits the same general behavior as the Sp group. 

2. Oscillation of the coupling 

When the coupling between the two point cores is 

oscillated, the situation is much simpler than before and 

is analogous to placing a reactivity oscillator in the 

coupling region between the cores of a coupled-core 

reactor. In this case the response of each of the and 

Sg, and Sgg, and 8.g and population pairs is 

identical. Cores one and two are driven by an oscillating 

source and they respond with the usual source transfer 

function as seen in Figure III.4. 

The response of the and population groups looks 

much like that shown in Figure III.4 up to 100 rad/sec, but 
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above this frequency the phase shift becomes larger and the 

magnitude attenuation is greater. 

The or population response shows a broad 

leveling in the magnitude from 200-2000 rad/sec and a 

gradual phase reversal in thls_region. This behavior is 

again believed due to the interaction of exchange neutrons 

between cores. 

These component responses are not described in detail 

since the results are presented only to provide background 

information and serve as a basis" for comparison. 

C. Green's Function Modal Analysis 

In this section the convergence of the Green's Function 

modes will be investigated and some space dependent results 

will be presented. Green's Function modes are nonorthogonal 

and this makes the theoretical treatment of their convergence 

more difficult than the treatment of convergence for 

orthogonal sets of modes. However, convergence to an exact 

solution in the limit as the number of modes increases 

without bound is not necessarily of direct Importance in 

engineering applications since physical requirements permit 

the use of only a finite (and small) number of modes. For 

this reason the most common method for determining convergence 

is to observe whether the solution changes appreciably when 

an extra mode is added to the approximation. If no 
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significant change Is observable, the approximation Is said 

to have converged. 

Since one of the primary objectives of this study is to 

investigate spatially dependent effects, all of the spatially 

dependent magnitude responses in this study are normalized 

to 0 db at the lowest frequency plotted on each figure. 

This is done in order to make the effects caused by changing 

the oscillator and detector locations more apparent. 

1. Two modes 

When only two Green's Function modes are used to 

describe a coupled-core reactor it is reasonable to choose 

each of the modes to originate in a fuel region. If this 

is done it is not possible to obtain an adequate description 

of the system in either the time or the frequency domain. 

Figure III.5 represents a typical result when a plane 

oscillator and detector are located in the center of one 

core. No significant spatial dependence is predicted by 

the two-mode representation as the detector is moved about 

the reactor. 

2. Five modes 

It has been found that in order to describe a coupled 

nuclear system using Green's Function modes it is essential 

that a mode(s) representing the coupling region be present. 

These modes were first mathematically described by Carter 

(9,10) who also suggested that they were necessary for an 

adequate description of the time behavior of a coupled 
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reactor. This was subsequently confirmed by McPadden^ 

by comparison with an exact solution. This Investigation 

used two, five, and seven mode representations to confirm 

that such modes are also required In order to obtain an 

adequate description of the system in the frequency domain. 

A review of some of these results follows after a 

brief description of the model. 

The dimensions of the one-dimensional model used to 

represent the UTR-10 reactor are shown in Figure II.1 and 

the oscillator and detector positions investigated in this 

study are Illustrated in Figure III.6. 

Detector locations are designated by the letters A 

through E in Figure III.6 and they are positioned in all 

the models used in this study so that the detectors A and 

E are 20 cm from the nearest fuel region Interface and B, 

C, and D are located in the center of the left core tank, 

coupling region, and right core tank respectively. 

The oscillator locations were taken to be: (l) 12 cm 

from the left fuel region, (2) in the center of the left fuel 

region, and (3) in the center of the coupling region. These 

locations correspond to possible access points in the Iowa 

State University UTR-10 reactor. 

^McFadden, James, Ames, Iowa. Results of computer 
calculations. Private communication. 1968. 
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For a five-mode analysis each distinct material region 

of the reactor was represented "by a mode. The derivations 

of the equations for these modes and the manipulation of 

the two-group neutron-diffusion equations into a form con- . 

venient for this analysis are shown in Appendix C. The 

equations which must be solved to determine the frequency-

dependent coefficients for the synthesis of the frequency 

response are derived in Section II.D. The frequency 

response is synthesized by evaluating an equation, of the form 

N 
cp(x, jw) = : ;|r (x)a (juj) 

i=l ^ ^ 

where N is the number of modes in the expansion and x fixes 

the detector location. The oscillator location and type, 

i.e., energy dependence and size, were specified before the 

frequency-dependent coefficients were obtained. 

Throughout the rest of this chapter a localized plane 

oscillator, with absorber in only the thermal group, will 

be assumed to be located in the center of the left core 

tank and the detector will be moved to positions A, B, C, 

D, and E. 

Typical results for a five-mode analysis of the UTR-10 

prototype reactor are illustrated in Figures III.7 and III.8. 

Fundamental differences, and some similarities, are apparent 

between these responses and the spatially dependent response 

of a conventional reactor. 
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One of the similarities "between these results for a 

coupled reactor and experimental results for a conventional 

heavy-water reactor (9) is the slight resonance in the 

magnitude and phase which is present when the oscillator 

and detector are located at the same point. Except when 

the detector is located in the driven core or beyond, the 

other detector positions also yield results qualitatively 

in agreement with results obtained experimentally by Hansson 

and Poulke (20) for the NORA reactor. 

One of the significant differences between the results 

obtained here and those previously reported is that both 

"conventional" behavior and a sink have been observed in a 

consistent set of results on a single reactor type. In 

addition a mechanism is proposed to explain the presence of 

the sink. The occurrence of the sink Is not without pre­

cedent in nuclear systems. Kylstra and Uhrlg (30) experi­

mentally observed multiple sinks in both light-water and • 

heavy-water slab subcrltlcal assemblies and Hendrlckson 

(22) observed a similar phenomenon in cross-spectral-denslty 

measurements on the Iowa State University UTR-10 reactor, 

under slightly different circumstances. Thus there is good 

reason to believe that the sink actually exists and can be 

directly measured In a physical system. 
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3. Seven modes 

A sample problem using seven modes was run as a check 

on the convergence of the five-mode solution. The two 

extra modes were added in the left fuel region, so that it 

was represented by three modes in the seven-mode analysis. 

The additional modes were added to the driving region 

because it is the region in which a reactivity change 

is being made and hence the flux is changing most rapidly 

there. Similarly, if a time-domain analysis were being 

made with a reactivity change in the left core tank one 

would be inclined to add more modes near where the change 

was being made since that is where the flux would experience 

the greatest change. 

As can be seen from Figures III.7 and III.8, the 

agreement between the five-and seven-mode calculations is 

very good up to 1500 rad/sec. While results are not 

included on these figures for frequencies less than 1 

rad/sec the agreement for low frequencies was excellent. 

Thus it can be said with reasonable certainty that the five-

mode results should be accurate up to 1500 rad/sec and above 

that they should show trends well enough to draw general 

conclusions. That is, above 1500 rad/sec the differences 

between the five-and seven-mode results are in quality and 

not in kind. 
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IV. POSSIBLE MECHANISM FOR CAUSE OF SINK 

A distinctive feature of the frequency responses 

obtained in this study is a sink, or sudden decrease in 

the magnitude of the frequency response followed by a rapid 

recovery, at frequencies between 2000 and 3000 radians per 

second. 

It is believed that this phenomenon is caused by a 

superposition of two waves of the same frequency and approxi­

mately the same amplitude but which are l80° out of phase. 

This phase difference could be caused by a simple time delay 

in the system. If so, the frequency of the first sink can 

be determined to be (u = tt/t since 

(ju = Sirf 

f = 1/T 

t = T/2 

where 

w ~ frequency, rad/sec 

T ~ period of the wave, sec 

T ~ magnitude of the delay, sec. 

For the two group model used in this study it is pro­

posed that when the oscillator is in one core tank the fast-

neutron-group oscillation propagates essentially instantly 

across the coupling region and is thermalized in the other 

core tank. The thermal-group oscillation propagates 

much more slowly through the fuel regions and across the 
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coupling region and arrives at the driven core after the fast 

oscillation. Then, at some frequency the transit time of the 

thermal group is such that the thermal oscillation arrives 

at the driven core l80° out of phase with the thermalized 

fast wave. The result is partial cancellation of the neutron 

oscillation in the driven core and a decrease in the magnitude 

of the frequency response at that frequency. 

The neutron wave velocities in the various reactor 

regions can be calculated (32, 42) and for a 45 cm Internal 

reflector the transit time from the center of one core to 

the center of the other for an oscillation of 2000 rad/sec 

is 1.55 msec. This transit time implies that a sink should 

occur at 2020 rad/sec which is in good agreement with the 

observed frequency of about 2000 rad/sec. 

A change in the thermal-group speed should cause the 

sink frequency to change and this effect is observed. For a 

thermal-group speed of 3000 meters per second the calculated 

total transit time is 1.226 msec, and this leads to a sink 

frequency of 2560 rad/sec which agrees favorably with the 

observed sink at about 27OO rad/sec. 

Systems with sinks similar to those found here are 

relatively common in boiling heat-transfer systems (l, 6). 

For example the power-boiling boundary transfer function, 

z(s), is described by 
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where T is a time constant associated with the time required 

for water to pass from the inlet of a "boiling core to the 

outlet. When this transfer function is integrated over a 

range of T to represent an averaging due to the distribution 

of transit times caused by the velocity distribution in 

the flow channel, successive sinks are observed with the 

same general magnitude and phase behavior as seen in the 

UTR-10 reactor with oscillator at position 2 and detector 

at position E. 

A detailed analysis of this phenomenon would be 

interesting and could be of practical value, but unfortunately 

is beyond the scope of this work. 
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V. PARAMETRIC ANALYSIS USING GREEN'S MODES 

The earliest Investigations of coupled-core reactors 

(4, 12) revealed that these reactors are particularly 

susceptible to flux tilting and that the sensitivity to 

tilting depends largely upon how tightly the two cores are 

coupled. Therefore the effect of flux tilting on the 

frequency response was chosen as one of the parameters to 

be investigated. Also investigated in this analysis were 

the effects of (l) a localized versus a volume oscillator, 

(2) the neutron group speed, (3) neutron energy group, (4) 

coupling region size and (5) oscillator location. These 

were chosen as parameters which might be Important based 

upon experience with simpler nuclear reactors and con­

jecture . 

The results of these analyses will be discussed in 

approximately the inverse order of their effect on the 

reactor response. 

A. Effect of Flux Tilt 

When an oscillator is placed In a reactor it contri­

butes a steady-state poisoning effect due to the materials 

of its construction In addition to the dynamic reactivity 

effect it produces when its rotor is in motion. The result 

of this steady-state poisoning is to depress the flux in 

the vicinity of the oscillator or, in the case of a coupled 
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reactor, to tilt the flux. The flux was tilted in the UTR-10 

prototype reactor by Increasing the cross section the 

desired amount in the core which contained the oscillator and 

iterating to the required critical cross section in the other 

core. 

It was found that for small flux tllts--at least up to 

1.3:1--the effect of flux tilt on the frequency response 

was negligible except at high frequencies and when far from 

the oscillator, where the differences were almost negligible. 

Differences between frequency responses are considered 

negligible if the magnitudes and phases differ by less than 

5̂ . 

B. Localized vs. Volume Oscillator 

The differences in responses due to a localized oscil­

lator and a volume oscillator were investigated for the case 

in which the localized oscillator was represented by a plane 

absorber at the center of the left core and the volume 

oscillator was represented by an absorber uniformly 

distributed throughout the core. No significant differences 

were observed between the responses to these two oscillators 

up to 1500 rad/sec. However, it was observed that the 

response in the vicinity of the sink appeared 

to be smoothed more when the entire core was 

oscillated and the sink was also moved to a higher frequency. 
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C. Neutron Group Speed 

It was found that differences in the magnitude of the 

frequency responses for fast-group speeds of 4.36 x 10^ 

m/sec (15) for the prototype model and 3.0 x 10^ m/sec (3l) 

for the comparison model were negligible. However, the 

smaller fast-group speed resulted in the larger pJhase shift 

both as the detector was moved away from the oscillator and 

as the frequency increased. This increase in phase shift 

for the smaller fast-group speed was probably due to the 

fact that the oscillating component of the thermal group 

at any point is made up of components due to the fast group 

that is being thermallzed at that point and due to the 

diffusion of the thermal-group oscillation from the oscillator 

to that point. The manner in which these components add 

together can cause the phase lag to change. 

A thermal-group speed of 3000 m/sec for the comparison 

model, relative to 2200 m/sec in the prototype model, 

resulted in considerably less attenuation of the neutron 

oscillation. This difference increased with both'distance 

from the oscillator and frequency and was caused by the 

fact that the attenuation length of a neutron wave Increases 

as the velocity of neutrons in the wave Increases (32). 

The phase shift for the larger thermal-group speed was 

everywhere less than that for the prototype model except 

at the oscillator where they were about the same. This is 
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because It takes the slower wave longer to get from place 

to place and the longer It takes the more phase shift 

results. For a similar reason the sink is shifted to a 

higher frequency for the larger thermal-group velocity. 

D. Dependence on Neutron Energy Group 

For the model being used here a comparison of frequency 

responses is possible between only two energy groups, the 

fast group and the thermal group. 

When the oscillator is located at position 2 and the 

detector is located at position B the response of the fast 

group follows that of the thermal group very closely. 

However the magnitude attenuation and phase lag of the fast 

group are much smaller at points A and C than is the case 

for the thermal group at these points. This is due to the 

large velocity of the fast group and its associated larger 

attenuation length. When the detector is located at 

position D the fast-and thermal-group magnitude responses 

are virtually identical up to 1500 rad/sec. Above this 

frequency the effect of the sink becomes dominant and the 

responses differ somewhat. This phenomenon indicates that 

the fast response in the driven core is due almost entirely 

to the oscillation of the slow group in the driven core 

which has diffused across from the driving core. Similarly 

the magnitude and the phase shift of the fast group at 

position E are closer to the response at D than is so for 
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the thermal group, just as is true in the vicinity of the . 

driving core. 

From these results it seems that at the center of the 

driven core virtually none of the fast-neutron oscillation 

has come directly from the driving core. This conclusion 

can be confirmed by examination of Figure II.4 from which 

it can be seen that the fast mode from one fuel region is 

essentially completely attenuated before it reaches the 

center of the opposite core. 

It can be seen from Figures V.1 and V.2 that the fast-

group response is strongly dependent upon the presence of 

the driven core. The magnitude and phase responses show 

very little spatial dependence until the detector is more 

than half way through the coupling region; then suddenly 

the presence of the driven core is felt, the magnitude 

suffers attenuation, and large phase lags are introduced. 

Eventually as the detector moves through the driven core 

the response becomes almost space independent again. 

In all of the cross-plotted frequency responses which 

follow, the parametric analysis will show results only for 

the frequencies = 10 rad/sec, cug = 200 rad/sec, = 

500 rad/sec, = 1000 rad/sec and = 1500 rad/sec. Hence 

these values will not be repeated on each figure. These 

frequencies represent typical behavior in the range of 

frequencies where convergence of the five-mode approximation 

is good and covers frequencies from the low-frequency 
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Figure V.l. Space dependence of fast group magnitude 
response. 

Figure V.2. Space dependence of fast group phase response 
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region almost up to the sink frequency. 

Cross-plotting the reactor responses with frequency 

as a parameter and location as the independent variable 

allows the spatial dependence of the effect being investi­

gated to be more easily observed and analyzed. 

E. Coupling Region Size 

An oversimplification of the general behavior of the 

reactor frequency response might be stated as follows': 

In general, the magnitude decreases and the phase lag 

increases as the oscillation frequency increases and the -

detector is moved further from the oscillator. Figures V.3 

and V.12. These effects become more pronounced at higher 

frequencies and detailed behavior is strongly dependent upon 

oscillator location and core separation distance. 

In particular, as coupling distance increases from 20 

to 45 cm the magnitude of the reactor response continues to 

decrease as the detector is moved further from the oscillator 

and as frequency is increased. However when the separation 

reaches 50 cm a reinforcement of the magnitude begins to 

appear at the higher frequencies in the vicinity of the 

driven core. Figure V.9, and this effect is quite apparent 

by the time the core separation has reached 60 cm. Figure 

V.ll. 

For coupling distances of 20 to 35 cm, little or no 
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Figure V.3. Space dependence of magnitude, coupling 
region =20 cm. 

Figure V.4. Space dependence of magnitude, coupling 
region = 20 cm. 
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Figure V,5. Space dependence of magnitude, coupling 
region =35 cm. 

Figure V.6. Space dependence of phase, coupling 
region = 35 cm. 
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Figure V,7. Space dependence of magnitude, coupling 
region = 45 cm. 

Figure V.8. Space dependence of phase, coupling 
region = 45 cm. 
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Figure V.9. Space dependence of magnitude, coupling 
region = 50 cm.  

Figure V.IO. Space dependence of phase, coupling 
region = 50 cm. . 
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Figure V.ll. Space dependence of magnitude, coupling 
region = 60 cm. 

Figure V.12, Space dependence of phase, coupling 
region = 60 cm. 
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phase shift is contributed at any frequency by the reactor 

in a region from the center of the coupling region to the 

outer edge of the driven core. This effect is shown In 

Figures V.4 and 7.6. 

In summary it can be said that coupling distance has a 

considerable effect on the detailed frequency response of a 

reactor and a change of 10-15 cm in the coupling region size 

can make a considerable difference in the response. 

P. Effect of Oscillator and Detector Location 

on Response of the I.S.U. UTR-10 Reactor 

The fast- and thermal-flux distributions for the Iowa 

State University UTR-10 reactor (l.S.U. UTR-IO) are shown 

in Figure V.13 for the flux tilt experimentally measured on 

Dec. 19^ 1967, with the cold core loaded, shim-safety rod at 

8.0 Inches, and regulating rod at 2.5 inches. The transverse 

buckling is larger in this model than in the prototype 

reactor used earlier so the thermal flux peaking is reduced, 

otherwise the flux distributions are much alike. 

This section describes the results of the calculation 

of the spatially-dependent frequency response for an actual 

coupled nuclear reactor, the I.S.U. UTR-10. The spatial 

dependence of the frequency response caused by oscillator • 

location will be examined in addition to the dependence on 

detector position. There are three potential osoillator 

locations of particular Interest in the I.S.U. UTR-10, 
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they are: (l) 12 cm from the south side of the south core 

tank, (2) in the center of a core tank, and (3) in the center 

of the graphite coupling region between the two cores. 

These positions are shown in Figure III.6 and the frequency 

responses calculated under these conditions are shown in 

Figures V.l4 through V.19. 

By a comparison of Figures V.l4 and V.15 with V.l6 

through v.19 it is seen that spatial dependence becomes 

important at the lowest frequencies when the oscillator is 

located at 93 cm, that is, in an external reflector. Further 

examination shows that when the detector is at the point 

of oscillation the &/i break frequency moves from 56 to 47 

to 43 rad/sec for the oscillator at positions 1, 2, and 3, 

respectively; yet all three situations predict the same • 

break frequency of 43 rad/sec when the detector is far 

from the oscillator. This fact has been recognized in 

experimental work for some time (31) and oscillator 

measurements of the break are normally-Tnade with the 

detector and oscillator widely separated. 

The spatial dependence of the reactor response is 

primarily a high frequency phenomenon, that is, it occurs 

above the break of 30-60 rad/sec for light-water 

reactors; hence one is generally not interested in the 

delayed-neutron region unless feedback is to be studied. 

However, the contribution of delayed neutrons to the fre­

quency response will be included for completeness for the 
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case where the oscillator is at position 2. 

With the oscillator at position 2, Figures V.l6 and 

V.17, the frequency response looks much like that obtained 

from the prototype model, however due to the larger trans­

verse buckling and slightly larger fuel loading (5^ larger) 

the prompt neutron lifetime is smaller, so is larger, 

than in the prototype model. As a consequence, the magni­

tude response for the I.S.U.. UTR-10 reactor is everywhere 

slightly larger than for the prototype model and similarly 

the phase shifts are generally less than for the prototype. 

When the oscillator is moved to the center of the 

reactor the most apparent change in the frequency response 

is that the sink is no longer present in the magnitude 

response. The Bode plots for the oscillator at l42 cm, 

position 3, are shown in Figures V.lB and V.19 and look 

much like the spatially dependent frequency response obtained 

experimentally for the NORA reactor by Hans son and Foulke 

(20). This similarity is due to the fact that when the 

oscillator is in the center of the coupling region it is 

surrounded by fissile material on two sides and the graphite 

transmits the thermal-group oscillation to the cores with 

little attenuation. Since the reflected waves from one core 

to the other are very weak the cores do not interact signi­

ficantly with each other and the detector sees essentially 

the frequency response of a reflected slab reactor. 
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Although sufficiently high frequencies are not included 

in these figures to illustrate the fact, the phase angles 

eventually reach an asymptotic value which depends upon 

the oscillator and detector location. 
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VI. SUMMARY AND CONCLUSIONS 

The conclusions stated below are the results obtained , 

from analyzing a family of coupled nuclear reactors based 

upon a UTR-10 prototype model. Conclusions which were 

probably to be expected but which had not been explicitly 

stated are as follows. 

1. In order to describe a coupled nuclear reactor 

using Green's Function modes it Is essential that a 

mode(s) representing the coupling region be present. 

These modes were first mathematically described by 

Carter (9), who suggested they were necessary, and 

subsequently proved by McFadden^ to be necessary 

in the time domain by comparison with an exact 

solution. This investigation used two, five and 

seven mode representations to confirm that 

coupling-region modes are also required in order 

to adequately describe reactor behavior in the 

frequency domain. 

2. The delayed neutron effect is easily added to the 

calculation, however as has been previously 

observed (11, 28), the low-frequency response is 

extremely sensitive to reactor crltlcality. If 

the low-frequency behavior is to be accurately 

^McPadden, James, Ames, Iowa. Results of computer 
calculations. Private communication. I968. 
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described, the critloality determinant must be 

made as nearly zero as the number of significant 

figures capable of being carried will allow. 

3. In the low-frequency region, below about 10 rad/sec, 

the reactor response is essentially independent of 

spatial effects. 

The following conclusions are more directly a result of 

this study of coupled-core reactors. 

4. Five space modes, with one mode originating in each' 

region of the reactor, allows sufficient convergence 

to adequately describe the frequency response of the 

UTR-10 prototype reactor up to 1500 rad/sec. 

5. The spatially dependent frequency response changes 

significantly for a fixed oscillator location as 

the detector is moved about. In general the 

farther the detector is located from the oscillator 

the greater the attenuation and phase shift unless 

a sink is encountered. The frequency response is 

also strongly dependent upon the oscillator location 

with space dependence becoming apparent at lowest 

frequencies when the oscillator is in position 1 

and with the sink occurring only when it is in 

position 2. One result of these observations is 

that a consistent measurement of g/i is obtained 

irrespective of oscillator location if the 

detector is located far from the oscillator. 
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6 .  Small flux tilts have a negligible effect on the 

frequency response. 

7. A change in the coupling distance of 10-15 cm has a 

pronounced effect on the frequency response in the 

range of coupling distances from 20-60 cm. 

-8; When one core is driven by a reactivity oscillation 

the other responds as if driven by an oscillating 

source. The response of the driven side of the 

reactor may show a sink in the magnitude of the 

response when the detector is in the driven core or 

in its external reflector, for certain core separa­

tion distances. 

9. An increase in the thermal-neutron-group speed has 

the effect of shifting the sink to a higher frequency 

but causes no other significant change in the 

response of the prototype reactor. A smaller fast-

neutron-group speed causes the magnitude response 

in the vicinity of the sink to be smoothed consider­

ably and causes a definite change in the phase 

behavior of the prototype reactor when the detector 

is at position D. From analytical results obtained 

here it seems that the presence of the fast group 

is essential to a proper description of the system 

and the fast- and thermal-neutron-group speeds _ • 

must be properly chosen if good agreement between 

experimental and analytical results is to be 
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achieved. 

10. A possible explanation for the cause of the sink 

may be due to the oscillation in the fast group 

being propagated essentially instantly across the 

reactor and slowing down in the driven core. A 

sink occurs when the frequency.of oscillation is 

such that the velocity of propagation of the thermal-

neutron wave causes it to arrive at the driven core 

180° out of phase with the thermalized fast wave. 

11. The sink is not a characteristic of coupled nuclear 

reactors but may occur in any reactor under the 

proper circumstances. However it seems most likely 

that these conditions, such as large time delay and 

strong local moderation of the fast group, would 

occur most readily in coupled reactors. 

12. The final conclusion is that the zero-power 

frequency response of an atypical reactor should 

not necessarily be assumed to be similar to the 

classical point reactor transfer function with 

minor space-dependent modifications. The differ­

ences could be quite substantial at high frequencies 

and at distances far from the oscillator. 
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VII. SUGGESTIONS FOR FURTHER WORK 

The following topics are suggested as areas for future 

work in which a contribution in the area Investigated here 

could be made. 

1). Measure the spatially dependent frequency response 

of coupled-core reactors at high frequencies, > 100 rad/sec, 

in order to provide a check for analytic results. 

This could be done with a high-frequency oscillator, or, 

more likely would employ the use of noise techniques (3). 

2). Develop a mathematical model which would describe 

the magnitude and phase behavior of the frequency response 

in the vicinity of a sink. 

3). Investigate the effect of the distribution of 

Green's Function modes on the frequency response and see 

whether a criterion could be developed to guarantee that if 

an approximation had converged in the time domain it could 

be assured of producing a good solution in the frequency domain. 

4). Extend work of this type from one space dimension 

to two (l6, 29). 

5). Obtain a pole-zero representation of the reactor 

frequency response as a function of space by casting the 

reduced kinetics equations into state-variable form and 

obtaining the poles and zeros as suggested by Schultz and 

Melsa (36). This formulation of the response is desirable 

because it is the one most useful in control-system design 

(7). 
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X. APPENDIX A: DESCRIPTION OP THE UTR-10 REACTOR 

The UTR-IO reactor Is a water-moderated and graphite-

reflected coupled-core reactor licensed for operation up to 

10 - KW. It is a, commercial version of the Argonaut Reactor 

which was designed at Argonne National Laboratory. Each 

core consists of a 5-in. by 20-in. by 24-in. slab containing 

six fuel elements and each fuel element is an assembly of 

12 MTR-type fuel plates containing fully enriched uranium. 

These fuel plates are cooled by deionized light water. 

The two core tanks are separated by approximately l8 inches 

of nuclear grade graphite which comprises the coupling 

region and acts as a flux trap for thermal neutrons. A 

5-ft. by 5-ft. by 4-ft. thermal column is provided adjacent 

to the south core tank and a smaller (4l.5-in. by 30-in. by 

30-in.) thermal column is adjacent to the north core and 

leads to the shield tank as illustrated in Figure A.l. 

An access port to the midplane of the south core tank 

is obtained by means of a removable stringer near the center 

of the thermal column^ 

The reactor is fueled by approximately 3 kg, of fully 

enriched uranium, i.e., greater than 93^ U-235 with approxi­

mately equal masses of fuel being loaded into each core tank. 

The inequality of loading plus the effect of the control-

rod configuration results in a maximum flux tilt in the 

UTR-10 of about 1.35 based on the ratio of the average 
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thermal fluxes across each core tank. 

Control is accomplished by means of two safety rods, one 

shim-safety rod, and one regulating rod. During operation 

the safety rods are fully withdrawn ahd the shim-safety 

and regulating rod are positioned to achieve the desired 

operating conditions. When the reactor is scrammed the 

safety and shim-safety rods are rapidly driven in and a 

six-inch dump valve opens to drain the moderator from the 

core. 
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XI. APPENDIX B: DERIVATION OP THE EQUATIONS DESCRIBING THE 

TRANSFER FUNCTION OP A TWO-POINT REACTOR 

A pair of cores is considered coupled if fissions in 

one core may be caused by neutrons which originated in the 

other core. If each of the cores is treated as a point 

reactor in which the system maintains its criticality by a 

mutual exchange of neutrons, then for two cores at criticality 

k^(t) = k^^(t) + k^gft) =1.0 (B.l) 

and 

kgft) = kggft) + kgift) = 1.0 (B.2) 

where 

k^(t) =.the total multiplication constant of core 1 

•k^j(t)= that part of the multiplication constant of 

core i due to neutrons which were born in 

core j. 

The notation and formulation of the kinetic equations 

used in the frequency analysis of the two-point reactor 

will be that of Avery (4) and will employ only one group of 

delayed neutrons. The equations which describe the system 

are 
dS 

11 ~dl~ " ̂11^^"^^ ̂\l^^l2^ ~ \l ^11^*^1 (8.3) 

12 = .k^2(l~P) (S]_2"^^22^ ~ ^12 ^12^^2 (B.4) 
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21 ""df " (®'3) 

dS 
"̂ 22 dt'̂ ' ~ kggfl-pJfSĝ +Sgg) - Sgg + kggXCg (B.6) 

dCi 
^t~ ^(^11^^12) " ^"^1 (B.7) 

dCn 
= ^(Sgj+Sgg) - XCg . (8.8) 

The terms in Equations B.3 through B.8 are defined as 

= lifetime of neutrons in core 1 which originated 

in core j 

S.. = production rate of neutrons in core 1 which 
ij 

originated in core j 

k. . = the part of the multiplication constant in core 
1 J 

1 due to S. . type neutrons 
M 

g = Z X,g, 
1=1 ^ 

\ = average delayed neutron decay constant 

C = delayed neutron precursor concentration. 

A. Oscillation of Core One 

When the response of the two-point model to a sinu­

soidal oscillation of reactivity in core one is considered, 

assuming both cores to have the same nuclear properties, 

the various multiplication factors are described as follows 

k^^(t) = k^^(O) +6k^^(t) 
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k^gft) = +6k^2(t) 

kg2(t ) = kg2(O) 

where k^.(t), j = 1,2 represents a small sinusoidal oscil­

lation about the steady-state value k^j(O), j = 1,2. This 

oscillation of reactivity in core one causes all the neutron 

and precursor densities to be perturbed in the same manner, 

described by 

2 2 2 2 
Z  Z  S  , ( t )  =  Z  2  [ S  ( 0 )  +  5 S  ( t ) }  ( B . 9 )  

j=l i=l j=l i=l 

2 2 
Z  C ,  ( t )  =  Z  [ 0 , ( 0 )  +  5 0 ,  ( t ) }  .  ( B . I O )  

i-1 ^ i=l 

By substituting these perturbed densities into Equations 

B.3 through B.8, collecting steady-state terms and setting 

them equal to zero, neglecting products of infinitesimals 

and simplifying, the equations of the system become 

ill = (lc°i(l-S)-l)6Sii+kii(l-P)6Si2-^6!CiiS° 

+k°i^6Ci (B.ll) 

"^12 ~dt k^2 (l~P) ̂̂ 21*^^12 ̂^"^^^^22'^^^12^2" ̂^12 

+k°2^6C2 (B.12) 

"^21 dt " k2i(l-e)62ii:k2^(l-;)6S^2 

(B.13) 
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aas 22 
dt = kgg(1-P)ôSg^+kgg(1-3)GSgg-GSgg+kggXCg 

d5C 
df - eas^i + ess^g -

d6C, 

dt = + 3ÔS22 ~. A-SCg 

(b . I4)  

(B.15) 

( b . 1 6 )  

where 

kij - kij(O) 

Si = S^i(O) + 8^j(0) . 

Equations B.ll through- B.I6 may be rewritten in matrix 

form as follows 

aA = KA + _cc ( t ) • (B , 17 ) 

where 

A '=  

"J^^O 0 0 0 0' 

0 0 0 0 

0 0 .#2.0 0 0 

0 0 0 .^220 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

(B.18) 

A = oolCôS^i 68^2 6821 ^^22 60^ ôCg] (B.I9) 

K = 

k°^(l-3)-l 

0 

k2i(l-e) 
_ 0 

p 

0 

-1 

^21(1-3) 
0 
p 

0 

0 
o 
'12 
-1 

0 

0 

k:m(l-P) k°2(1~ ̂) 

0 

k°iX 

0 
o X 

0 

k°2^ 

k 

k22(l~P) k2(l-P)-l 

0 

3 

0 
g 

21 
0 k%rA 

0 
cO , 
^22' 
0 

0 - x  

(B.20) 
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and a,(t) represents the time dependent driving function 

O^t) = ool[6k^^S° 0 0 0 O] .  (B.21) 

This matrix driving function may be written in terms of 

a single driving function if there is no flux tilt, that 

is, if S° = Sg. The effective multiplication factor of a 

reactive assembly may be written 

kgff = n G pf PfPg (B.22) 

where 

= fast nonleakage probability 

• Pg = slow nonleakage probability, 

and the notation is that of Glasstone and Edlund (l8). 

For a small change in the thermal utilization (absorption 

cross section) such that f(t) = f(0) + 6f(t), where 

kg^2 = 1.0 when 6f(t) = 0, then 

6k ^eff"^ ~ 'nep(f-Q+'Sf )PfF3-l ^ 

k kgff ^o^f^s ^o 
(B.23) 

and 

5f ^ ̂ ^11 ̂  ̂ ^12 

^o k°^ k°2 
(B .24)  

or 

Gk.g = ôk,,k%/k?. . (B.25) 
'12 " "^11^12/^11 

The matrix driving function may be rewritten 
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a(t) = 

0 

0 

0 

0 

= 5k^]_S° I (B.26) 

The description of the system is now in the time domain. To 

obtain the frequency response assume 

. jwt Skii(t) = e' (B.27) 

that iSj assume that the change in multiplication constant 

is of magnitude and is oscillating at a frequency m. 

The change of the output, 6S will be of the same form 
1 J 

as the change in the input so 

= '"if 
jwt 

(B.28) 

where ÔS^. is a complex number which describes the phase 

behavior and w is the frequency at which the oscillator and 

neutron density oscillate. Substituting into Equation 

iuut 
B.17 and dividing by yields 

jWAA = KA + a(t ) 

or 

(-K + jwA)A = a(t) (B.29) 

where Â is the complex frequency-dependent solution vector. 

This equation may be solved for Â by separating the vector 

into real and imaginary parts and solving a real set of 
A 

simultaneous equations or by solving directly for the A 

vector using complex arithmetic. 
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If 

A = col[Re + jlmJ 

then the magnitudes and phases for the partial sources 

are defined as 

and phase of 

6S^^(w) = tan~^Im^^(uu)/Re^^(a)) , 

The total source in core one for a given frequency is 

ÔS^ = + ôS 2̂ = Re^2 + ^^^12 

= (Re^^ + Re^g) + j ^^12^ 

and its magnitude and phase with respect to the oscillator 

are 

I 63^1 =f (Re^^+ Re^g)^ + (im^^ + Im^g)^ 

phase 

ôS^ = tan ^(lm^^+ Im^gj/CRe^^H- Re^^) . 

These identities and their analogs may he used to obtain the 

various partial or total population responses. 

B, Oscillation of Coupling Between Cores 

To oscillate the coupling between cores a sinusoidal 

driving function is impressed upon the multiplication 

factors representing the exchange of neutrons between two 
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cores. The multiplication factors then become 

kli(t) = k^i(O) 

^21^^^ ~ ̂ 21^^^ +6k22^(t) 

Again allowing perturbation of all of the densities 

Sgg, and C^, substituting back into the point 

kinetics Equations B.3 through B.8, and simplifying as 

before, the kinetics equations become 

d^S 
-^11 -dt^ = lc°^(l-P)«S^i+k°^(l-e)SS^2-6S^,+k°j^UCj^ 

(B.30) 
. dGS.g 
&2 -# = k°2(l-S)6S2j^+k°2(l-P)6S22-50^2 

+6ki2(S2i+S22)+ki2^GC2 (B.3l) 

/ dÔS. g  .  

21 dF" " k2i(l-9)58^i+k2i(l-B)6Si2+k2i&C^ 

-6S2i+5k2iS0 (B.32) 

'^22 "dt ^ k22(l-3)6S2^+k22(l-3)^S22-ûS22 

+k02k5C2 (B.33) 

dGC^ 
^ + eas^2 - (B.34) dt 

d^C 
- = essg. + eas_s - k6Cg . (B.35) dt - ̂  "21 ' ^""22 "2 

When these equations are put into the form of B.29, 

(-K+jwA)A = a(t). 
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A, K, and A are found to be the same as when core one was 

oscillated, however, the driving function, a(t), is different 

_^(t) is now 

o^t) = col[0 0 0 O]. (B.30) 

If there is no flux tilt and the reactivity change is made 

symmetrically in both coupling terms the driving function 

becomes 
0 

0 

1 (B.31) 

1 

0 

0 

a(t) = 6k 0 
12-1 

and the partial and total population responses may be 

obtained as before. 
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XII. APPENDIX G: DEVELOPMENT OF EQUATIONS FOR THE GREEN'S 

FUNCTION MODES 

The first part of this appendix is a review 'of the 

method used to obtain the Green's Function modes as proposed 

by Dougherty and Shen (13) and modified by Carter (9). 

The multigroup diffusion equations may be written in 

operator form 

• Li = V"^ II (C.l) 

and the solution is to be expressed in the form 

N 
cp(x,t) = E ijf. (x)a. (t) (C.2) 

i=l ^ ^ 

where the functions. 4L(x) and a^(t) are to be determined. 

After the space modes, i|;(xhave been determined, the 

corresponding time dependent coefficients, a^(t), may be 

obtained by using the semidirect method of the calculus of 

variations (23). 

Although other characteristics have been mentioned (lô), 

some desirable properties of any set of space modes are that 

they be "readily" calculable in complex geometries, that 

they economize the expansion, and that they permit being 

tailored to perturbations about which one may have a 

priori information. One set of modes which satisfies these 

three criteria may be generated by first rewriting Equation 

C.l as an integral equation (17). 
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t X 
Cp{x,t) - cp (x) = J J d t ' d x ' { G ( x , t ; x ' , t ' ) v M ( x ' , t ' )  

X çi(x' , t ' ) }  ( c . 3 )  

where the multlgroup operator, L, has been redefined in 

terms of a removal and a fission operator so that 

L = Ly - XM . 

The kernel of C.3 is given by the equation 

if) G(x,t;x',t ')  = 6(x-x')5(t-t ')  (C.4) 

and G ( x , t ; x ' , t ' )  must satisfy the homogeneous boundary 

conditions satisfied by cp(x,t). The Integrand of C.3 is 

now approximated by a finite sum 

G ( x , t ; x ' , t ' ) V M ( x : , t ' ) v ( x ' , t ' )  =  

N 
Z  C ^ ( t ' ) G Q ( x , x ' ) v M Q ( x ' ) ç Q ( x ' ) A ^ ( x ' )  ( C . 5 )  

1=1 

where 

zero subscripts indicate steady state values 

G (x,x') is the initial steady state Green's Function 

defined by 

L G ( x , x ' )  = ô(x-x') plus the usual homogeneous 
o 

boundary conditions 

A^(x') =[unity in the ith reactor region 
(zero elsewhere 

and 

C^(t') is the time varying coefficient in the ith 

region. 
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Substituting the above approximation into the integrand of 

C.3 and integrating with respect to t' 

N t X 
- 9q(x) = Z [J C^(t'){J dx'GQ(x,x')vMq(x') 

X !p^(x')A^(x')}dt'] (0.6) 

an equation of the form 

n '  
cp(x,t) = E 1. (x)a. (t) 

i=l ^ ^ 

is obtained if the space modes satisfy an equation of the 

form 

*l(x) = J ^dx'GQ(x,x')VMQ(x')%^(x')A^(x'). (C.7) 

%0 

Operating on both sides of C.7 with L , the space modes are 
o 

found to satisfy the differential equation 

° 

or 

Lr $i(x) = VM_(x)%^(x)A^(x); i=l,2,...,N. (0.8) 

This equation, 0.8, is solved to obtain the space modes, 

\i;^(x), which are used to approximate the flux. These modes 

may be added together as follows 

N 
L Z *i(x) = vM qi (x), 
^o 1=1 " " 
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but since 

L = L - vM 
0 

then 
N 

L Z *i(x) = Ly Vg-L* . 
i=l ^ " 

Therefore 

N 
cp (x) = r i|/. (x) (c.9) 
° i=i ^ 

and the modes must sum to the initial steady-state flux. 

Equation 0.6 may be written as 

N t 
9(x,t )-, (%) s Ï. *.(x) 1 c (t ')at' 

1=1 o 

or 
N t 

9 ( x , t )  2  2  *  ( x )  ( 1  +  r  C  ( t ' ) d t ' ]  
1=1 ^ ; 

which is in the form desired for the approximation 

N 
9(x,t) S Z h (x)a.(t) 

i=l ^ 
if 

t 
a ^ f t )  =  1  +  f  C ^ f t ' j d t ' .  ( C . I O )  

0 

In a similar manner the adjoint space modes can be 

shown to satisfy the equation 

L y  1  =  1 , 2 , . . . , N  ( C . l l )  

plus the usual homogeneous boundary conditions. 

In order to obtain modes in the nonmultiplying regions. 
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it is necessary to redefine the steady-state loss operator. 

o 
The kinetics equations can be written 

T-1 38 LB = V 
at 

(c.i) 

where L is a space- and time-dependent matrix operator and 

the elements of the diagonal matrix V~^ are the reciprocals 

of the neutron-group speeds. At steady state = 0 so 

that Equation C.I becomes 

LS = 0. 

The operator L may then...be broken into two parts 

L = - vM 
0 

(C.12) 

where L is a steady-state removal operator and M is a 
o 

neutron production operator. Applying two-group diffusion 

theory to C.12 it becomes 

vE. 0 0 

-V 

_o 0 

Hence the operator M will be nonzero only in regions which 

contain fuel, so that in the moderator regions the .equation 

to be solved becomes 

ii/j_(x) = 0 (C.13) 
o 

plus the usual homogeneous boundary conditions. This 

problem admits only the trivial solution. 

It has been shown^ (9) that in order to obtain the 

^McPadden, James, Ames, Iowa. Results of computer 
analysis. Private communication. 1968. 
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correct time response for coupled-core reactors, a mode(s) 

must be present to represent the coupling region. When a 

mode of this type is not present and a disturbance is made 

in one core, the perturbation is not correctly propagated 

to the driven core and neither the time nor the frequency 

'behavior of the reactor is predicted correctly. 

In order to reformulate the problem so that a mode is 

generated for each region ($_, 10), the L-operator can be 

rewritten as 

L = (c.i4) 

where ̂  is a removal operator and can be thought of as 

a pseudoproduction operator. The matrixW must be constructed 

so that there will be a nonhomogeneous term, or source, in 

each region to be represented by a mode. This may be 

accomplished by dividing the L-operator as follows 

. 2 
0 rs" 

r 
-

D 0 ^a s a S a L r ^a 

where 

%r = z; + =i" 
^r 

and 

It has also been found (9) that the fraction of IL residing 

in 2' and does not affect the final solution of the 

problem, provided that the split is not infinitessimal. 
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The new equation the modes must satisfy is 

*l (x )  -Wcp^(x)A^(x)  (0 .15)  
O 

plus the usual homogeneous boundary conditions; an equation; 

analogous to C.15 is obtained for the adjoint modes..' 

The operators of the two-group diffusion equation must . 

now be defined so they will be compatible with this new 

formulation for the space modes. When it is assumed that 

fast absorption is negligible and that all fissions are due 

to thermal neutrons, the usual two-group time-dependent 

neutron diffusion equations become 

1 M 
kïT" + ,ï (0.16) 
I 1—1 

i; ̂  = v-% - Za'Ps + (°-") 

M dC. 

t-al = - Viî (G.18) 
1=1 

The precursor concentration can be eliminated as an 

explicit dependent variable by first finding the response 

of the ith precursor-group concentration to an impulse 

function in the slow flu%,, as follows 

dC 

-3t = PiVZfGÇg - . 

The Laplace -transform technique can be used to solve for 

C^(t) after assuming zero initial conditions. 
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or 

80̂ (8) = BiVZf - XiĈ 8̂) 

(S+\i)C^(S) = g^vZ^ 

0^(8) = BvZf/XS+k^) 

C, (t) = P,v%Le-^it 

From this impulse response it is possible to synthesize the 

precursor response to any input using a convolution as 

follows 

t 
O^^t) = I 9g(T)e-^l(t-T)dT . (C.19) 

— CO 

Then an operator Sj. can be defined where 

M 
= SgPgft) (C.20) 

so that 
M t /. \ 

®D = '"Zf J. (C.21) 
i=l _ 0 5  

and the two-group diffusion equation may be rewritten 

 ̂ ~ r̂'̂ F vẐ (l-B)pp + SpCp̂  (C.22) 

1_ 218 = + Sr%P ' 
Vg 0% 8 

In order to account for transverse leakage the fluxes 

are assumed to satisfy the wave equation in the y- and z-

directions. Hence for the z-direction 

çîg + = 0 
dz 
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or 

- 5 -^:' 
2 

Then the leakage rate is lA-% = -DB^cp. Since the total 

transverse buckling is = Er + and since the multi-1 y z 

group diffusion equations can be written 

T-1 B3 LS = V 
at 

(C.l) 

the loss terms can be regrouped to obtain the form 

C. 

-(Sr+DpSj) v2f.(l-B)+S f ' "D 

\ & -(:a+=s%) 
OX 

P 

0 cp. 
F 

(C.24) 

It is then convenient to define an effective removal cross 

section, 

r̂e - ̂ r 

an effective absorption cross section, Z g, 

,2 
âe â ŝ®T 

(C.25) 

(C.26) 

and a fast neutron production operator, G, 

G = vS^(l~P) + S D 

so that the matrix L in C.l becomes 

- r̂e ® 
ÔX 

Dc - Z 
ôx'" 

'ae-" 

(C.27) 
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The form of the L-operator has been defined making it 

possible to solve the equations for the space modes. Since 

L = Xp -7^1 (C.l4) 
o 

or 

Ô 
- r̂e G 

D 
s 3x2 as. 

D. - S' 
F ax2 re 

0 D 

0 

,2 
- V. s 3̂ 2 "ae. 

-0 

Equation 0.15 for the direct modes 

;[ *i(x) =:%7voAi(x) 
o 

becomes 

D. - S ' 
P 3x2 re 

0 

0 D - SJ 
s 3x2 Js. 

"re 

(C.15) 

-G 

L-Zr Zae. l?8_J 

Aĵ (x) 

(C.28) 

and the equation for the adjoint modes 

•l(x) =?31%+i.(x) 
o 

becomes 
.2 

D. -Z' 
F 8x2 re 

0 

0 

-V I 

i,+ 

, + 

y -T. ^re r 

-G S' 
ae 

cp. ,+ 

cp 
s J 

A^(x) 

(0 .29)  
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Finally the two-group diffusion equations obtain the 

form 

^ ̂  m + HB = V"^ If at 
(C.30) 

which is the form required for substitution into the func­

tional, II.8j used to obtain the time coefficients. Here 

Dp 0 
S = 

cp. 
P 
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XIII. APPENDIX D: SIGNIFICANCE OP K A BEING ZERO 

A natural consequence of the linearization of Equation 

11.19 is the observation that the matrix product K A equals 

_0. This fact is worthy of special attention because it 

provides additional Insight into the problem and also 

because it provides a check of computational accuracy. 

For simplicity of exposition, consider a two-energy-

group two-mode representation of the reactor. For this 

case the K matrix is expressed on the following page. 

At the steady- state condition all the elements of A 

are unity and for this heuristic example the product K^A 

yields a 4 x 1 row vector, the first element of which is 

ax ax ^ ̂FiZfeVpi ax 

^ ̂ Fl^re^F2 ^Fl^^T^sl ^ ^ 

or , 
/ Ô r av K 

\  ̂ÔX~ P̂l̂ rê  F̂l̂ f̂̂ s) " ° 

The other N-1 equations for the fast group are identical 

except for the subscript of the fast-adjoint mode. This 

equality requires that when the approximate solution to the 

fast-diffusion equation is weighted with the jth fast-

adjoint mode the result is zero. This implies that there 

is no net rate of change of importance of "type j" in the 

reactor. When all modes are considered this corresponds 



www.manaraa.com

&x p ax ^^Pl^re^Pl 

^F2 
^ ÔX +*P2^re*Pl 

ôii) 
F1 

a* 
D-

P2 .,,,+ 
Bx F ÔX 

+ 
ax %' ÔX "̂ F̂2̂ rê F2 

I'SI Ŝ I'FI 

8̂2̂ 'r̂ Fl 

^8l^r^F2 

^82^T^F2 

Matrix D.l. K Ag matrix for the two-mode case. 



www.manaraa.com

5$ 
+ 
Bl D 

a$ Bl 
ÔX s ax ^sl^ae '^Bl 

all 

ax s2 D_ 2!&1 + •tâ aetsl S ÔX i&» .  

ÔX 

Sit' 
â#̂  +*l22ae*82 

Matrix D.l (Continued) 



www.manaraa.com

120 

to a classical definition of criticality (4) which states 

that the net rate of change of importance in a critical 

reactor is zero. This argument applies to each neutron 

energy group in the approximation. 

The product can be used as a check of the compu­

tational accuracy by actually evaluating the matrix product 

to see how near it is to the zero vector. This introduces 

no significant problem since the elements of K must be 

calculated anyway to obtain the frequency response. It is 

necessary to make the product, KgA , as small as possible 

because if it is not sufficiently small the convergence of 

the solution is destroyed. For the model studied, if each 

of the elements of K A "tfas not several orders of magnitude 

smaller than the largest elements of the effect was 

observable in the solution and an error could be suspected. 
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